R语言主成分分析(PCA)
Posted jiaxinwei
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了R语言主成分分析(PCA)相关的知识,希望对你有一定的参考价值。
https://www.cnblogs.com/jin-liang/p/9064020.html
数据的导入
> data=read.csv(‘F:/R语言工作空间/pca/data.csv‘) #数据的导入 > > ls(data) #ls()函数列出所有变量 [1] "X" "不良贷款率" "存贷款比率" "存款增长率" "贷款增长率" "流动比率" "收入利润率" [8] "资本充足率" "资本利润率" "资产利润率" > dim(data) # 维度 [1] 15 10
一.数据标准化
> std_data=scale(data[2:10]) #数据标准化 > > rownames(std_data)=data[[1]] #数组各行名字定义为数据文件的的第一列 > > class(std_data) #查看数据类型 [1] "matrix" > df=as.data.frame(std_data) #转化为数据框 > class(df) [1] "data.frame"
习惯数据框格式
数据标准化
> std_data=scale(data[2:10]) #数据标准化 > > rownames(std_data)=data[[1]] #数组各行名字定义为数据文件的的第一列 > > class(std_data) #查看数据类型 [1] "matrix" > df=as.data.frame(std_data) #转化为数据框 > class(df) [1] "data.frame"
二.主成分分析结果
> df.pr=princomp(df,cor=TRUE) #主成分分析 > summary(df.pr,loadings=TRUE) #列出结果 包含特征向量<br> Importance of components: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Standard deviation 1.8895 1.3087 1.2365 0.9593 0.86553 0.46727 0.4168 0.293547 0.201641 Proportion of Variance 0.3967 0.1903 0.1699 0.1023 0.08324 0.02426 0.0193 0.009574 0.004518 Cumulative Proportion 0.3967 0.5870 0.7569 0.8591 0.94235 0.96661 0.9859 0.995482 1.000000 Loadings: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 不良贷款率 0.425 0.188 0.288 0.423 0.173 0.695 资本充足率 -0.359 -0.521 0.234 0.546 0.127 -0.214 -0.426 存贷款比率 0.301 0.532 -0.142 -0.370 -0.324 0.248 -0.320 -0.438 流动比率 -0.192 0.429 -0.416 0.439 0.306 -0.384 -0.113 0.399 资产利润率 -0.392 0.332 -0.438 -0.178 0.452 0.494 0.238 资本利润率 -0.413 -0.185 0.259 -0.103 0.428 -0.562 0.167 -0.436 收入利润率 -0.299 -0.455 -0.116 0.299 -0.481 -0.159 0.432 -0.329 0.221 存款增长率 -0.243 0.249 0.387 0.636 -0.282 0.171 0.336 -0.309 贷款增长率 -0.300 0.342 0.518 -0.127 0.101 0.214 -0.620 0.260
结果比较杂乱,接下来确定主成分个数
三.确定主因子个数
根据累计贡献率大于90%,确定
计算相关系数矩阵
> cor(df) #相关系数矩阵 不良贷款率 资本充足率 存贷款比率 流动比率 资产利润率 资本利润率 收入利润率 存款增长率 不良贷款率 1.0000 -0.57238 0.31761 -0.20055 -0.70121 -0.45662 -0.53825 -0.16790 资本充足率 -0.5724 1.00000 -0.33566 0.61749 0.51053 0.32931 0.37424 0.01208 存贷款比率 0.3176 -0.33566 1.00000 0.16576 -0.02387 -0.72464 -0.56974 -0.11599 流动比率 -0.2005 0.61749 0.16576 1.00000 0.31280 0.07588 -0.03629 0.27787 资产利润率 -0.7012 0.51053 -0.02387 0.31280 1.00000 0.44019 0.13002 0.24387 资本利润率 -0.4566 0.32931 -0.72464 0.07588 0.44019 1.00000 0.38484 0.26496 收入利润率 -0.5383 0.37424 -0.56974 -0.03629 0.13002 0.38484 1.00000 0.24963 存款增长率 -0.1679 0.01208 -0.11599 0.27787 0.24387 0.26496 0.24963 1.00000 贷款增长率 -0.2863 0.03398 -0.14413 0.08791 0.59245 0.55095 -0.09947 0.60455 贷款增长率 不良贷款率 -0.28628 资本充足率 0.03398 存贷款比率 -0.14413 流动比率 0.08791 资产利润率 0.59245 资本利润率 0.55095 收入利润率 -0.09947 存款增长率 0.60455 贷款增长率 1.00000
求特征值和特征向量
>y=eigen(cor(df)) #求出cor(df)的特征值和特征向量 > y$values#输出特征值 [1] 3.57008 1.71263 1.52895 0.92033 0.74914 0.21834 0.17370 0.08617 0.04066
输出前五个累计贡献率
> sum(y$values[1:5])/sum(y$values) #求前5个主成分的累计方差贡献率 [1] 0.9423
输出前5个主成分的载荷矩阵
> df.pr$loadings[,1:5]#输出前5个主成分的载荷矩阵 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 不良贷款率 0.4245 0.03196 0.18753 0.28824 0.4226 资本充足率 -0.3595 0.02955 -0.52091 0.04673 0.2341 存贷款比率 0.3013 0.53170 -0.14155 -0.09645 -0.3697 流动比率 -0.1923 0.42903 -0.41595 0.43880 0.3061 资产利润率 -0.3916 0.33239 -0.04543 -0.43786 -0.1780 资本利润率 -0.4134 -0.18527 0.25918 -0.10322 0.4280 收入利润率 -0.2990 -0.45539 -0.11566 0.29949 -0.4810 存款增长率 -0.2432 0.24926 0.38706 0.63621 -0.2824 贷款增长率 -0.3000 0.34207 0.51768 -0.12671 0.1011
画出碎石图
screeplot(df.pr,type=‘lines‘) #画出碎石图
画出散点图
biplot(df.pr) #画出主成分散点图
四.获取相关系数矩阵的特征值和特征向量
> y=eigen(cor(df)) #求出cor(df)的特征值和特征向量 > y$values#输出特征值 [1] 3.57008 1.71263 1.52895 0.92033 0.74914 0.21834 0.17370 0.08617 0.04066
五.计算主成分总得分
> s=df.pr$scores[,1:5]#输出前5个主成分的得分 > #s[,1] > #计算综合得分 > > scores=0.0 > for (i in 1:5) scores=(y$values[i]*s[,i])/(sum(y$values[1:5]))+scores > > > cbind(s,scores)#输出综合得分信息 Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 scores 北京农商银行 -0.9927 -0.4565 -0.773341 0.72371 0.5357 -0.52362 上海农商银行 0.5461 -0.4069 0.228600 -0.05691 -1.1411 0.08196 广州农商银行 -1.7680 -0.5058 0.091704 0.46582 0.4301 -0.74130 天津农商银行 0.8670 -1.0680 -0.118665 -1.13960 -0.2242 -0.01556 (宁波)慈溪农村商业银行 -0.9713 2.0909 -2.590721 0.44416 0.7692 -0.33751 江阴农商银行 0.6533 0.3486 -1.678249 0.47363 -0.4051 0.05848 成都农商银行 -2.5372 -3.2477 0.008494 0.24227 1.2955 -1.58158 重庆农村商业银行 -1.0099 -0.1061 1.753280 0.23145 -0.6871 -0.16602 (宁夏)黄河农村商业银行 -0.5903 0.7269 1.227349 0.59878 -1.1312 0.08463 (陕西)旬阳农村商业银行 0.1928 1.7666 -0.273642 -1.29087 0.7258 0.31262 太仓农村商业银行 3.1937 -1.4905 -1.089861 -1.17931 -0.6266 0.66358 武汉农村商业银行 -0.8349 0.1686 -0.119553 -1.63283 -0.4856 -0.55902 安徽合肥科技农商银行 -0.2713 0.3084 -0.273867 1.79049 -1.2170 -0.01448 福州农商银行 -1.5557 1.6844 2.185117 -0.80662 0.7243 0.05566 沈阳农商银行 5.0781 0.1871 1.423354 1.13584 1.4374 2.68217
以上是关于R语言主成分分析(PCA)的主要内容,如果未能解决你的问题,请参考以下文章
R语言PCA主成分分析(Principle Component Analysis)实战1
R语言PCA主成分分析(Principle Component Analysis)实战2
R语言主成分分析PCA和因子分析EFA主成分(因子)个数主成分(因子)得分主成分(因子)旋转(正交旋转斜交旋转)主成分(因子)解释