山东大学 机器学习 实验报告 实验2 模式分类 上机练习
Posted towerbird
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了山东大学 机器学习 实验报告 实验2 模式分类 上机练习相关的知识,希望对你有一定的参考价值。
【17级的同辈们,这是我实验报告真实且全部的内容,求求求求你们,不要让我后悔提前发布 ╥﹏╥... 。真的挺简单的,1天就能搞定,而且在书里的位置我都标注出来了,让我们来一起学习吧!!!( ̄▽ ̄)",当然错了也概不负责哈~~~~】
3、实验内容及说明
使用上面给出的三维数据:
1. 编写程序,对类 1 和类 2 中的 3 个特征
x i 分别求解最大似然估计的均值???和方差?? ?2。
2. 编写程序,处理二维数据的情形??(??)~??(??,??)。对类 1 和类 2 中任意两个特征的组合分别求解最大
似然估计的均值?? ?和方差?? ?(每个类有 3 种可能) 。
3. 编写程序,处理三维数据的情形??(??)~??(??,??)。对类 1 和类 2 中三个特征求解最大似然估计的均值
?? ?和方差?? ?。
4. 假设三维高斯模型是可分离的,即?? = ????????(??1 2,??2 2,??3 2),编写程序估计类 1 和类 2 中的均值和协方
差矩阵中的参数。
5. 比较前 4 种方法计算出来的每一个特征的均值 μi的异同,并加以解释。
6. 比较前 4 种方法计算出来的每一个特征的方差 σi的异同,并加以解释。
1、
a)预处理二列矩阵,就是类1里选1个,3种可能、类2里选1个,3种可能
b)均值的最大似然估计就是样本均值,协方差的最大似然估计就是协方差矩阵均值,运用书P71的式(16)、式(17)计算均值???和方差?? ?2。
2、
a) 预处理四列矩阵,就是类1里选2个,3种可能、类2里选2个,3种可能
b) 同上
3、
a)六列矩阵不预处理
b)同上
4、
a)该题属于3.2.3 ??已知而?? ?未知的情况,用式(11)估算出?? ?值,(事实上,可以发现?? ?的计算方式并没有改变)
b)由3.2.4节知,??的参数可能是1/n和1/(n-1),我们希望选择的参数能导致分类结果最优,也就是能让最大值和第二大值差别更大。我的思路是,用单位向量作为测试点,得到所有判别值,选择第一和第二的差的绝对值最大的参数
5、6:异同嘛……写就好了
每一道题的类包含相应预处理,内核方法在math包里:
1 import static math.M.*; 2 3 //1题 4 public class a { 5 // 预处理二列 6 public static void main(String[] args) { 7 int group = 2; 8 int len0 = 1; 9 for (int i = 0; i < 3; i++) { 10 for (int j = 0; j < 3; j++) { 11 double[][] x0 = new double[raw.length][2]; 12 addCols(raw, i, x0, 0); 13 addCols(raw, j, x0, 1); 14 double[][][] xx = ini(x0, group, len0); 15 16 double[][] u = getU(xx, group, len0); 17 double[][][] sigma = getSigma(xx, group, len0, xx.length); 18 19 System.out.println("组合:" + (i + 1) + " " + (j + 1)); 20 System.out.println("uD835uDF07?"); 21 print(u); 22 System.out.println("uD835uDF0E ?2"); 23 print(sigma); 24 System.out.println(); 25 } 26 } 27 } 28 }
1 import static math.M.*; 2 3 //2题 4 public class b { 5 // 预处理出四列 6 public static void main(String[] args) { 7 int group = 2; 8 int len0 = 2; 9 10 double[][] x0 = new double[raw.length][4]; 11 int[][]x={ 12 {0,1}, 13 {0,2}, 14 {1,2}, 15 }; 16 17 for (int i = 0; i < 3; i++) { 18 for (int j = 0; j < 3; j++) { 19 print2(x0,group,len0,x[i][0],x[i][1],x[j][0],x[j][1]); 20 } 21 } 22 } 23 24 static void print2(double[][] x, int group, int len0, int x1, int x2, int x3, int x4) { 25 System.out.println("类1 特征" + (x1 + 1) + (x2 + 1) + " 类2 特征" + (x3 + 1) + (x4 + 1)); 26 addCols(raw, x1, x, 0); 27 addCols(raw, x2, x, 1); 28 addCols(raw, x3 + 3, x, 2); 29 addCols(raw, x4 + 3, x, 3); 30 double[][][] xx = ini(x, group, len0); 31 print(getU(xx, group, len0), getSigma(xx, group, len0,x.length)); 32 33 } 34 }
1 import static math.M.*; 2 3 //3题 4 public class c { 5 // 六列不处理 6 public static void main(String[] args) { 7 double[][]X=raw; 8 int group = 2; 9 int len0 = 3; 10 double[][][] x = ini(X, group, len0); 11 double[][] u = getU(x, group, len0); 12 double[][][] sigma = getSigma(x, group, len0,x.length); 13 14 System.out.println("uD835uDF07?"); 15 print(u); 16 System.out.println(); 17 System.out.println("uD835uDF0E ?2"); 18 print(sigma); 19 } 20 }
1 import java.util.Arrays; 2 3 import static java.lang.Math.abs; 4 import static math.Classify.g; 5 import static math.M.*; 6 7 //4题 8 public class d { 9 public static void main(String[] args) { 10 System.out.println("n: "+raw.length); 11 System.out.println(getSigmaDiv(ini(raw, 2, 3), new double[]{1 / 2, 1 / 2}, 2, 3)); 12 } 13 14 static int getSigmaDiv(double[][][] x, double[] p, int group, int len0) { 15 double[][][] sigma1 = getSigma(x, group, len0, x.length); 16 double[][][] sigma2 = getSigma(x, group, len0, x.length - 1); 17 double[][] u = getU(x, group, len0); 18 19 double[][] x0 = new double[1][u[0].length]; 20 Arrays.fill(x0[0], 1); 21 22 double[] t1 = new double[group]; 23 double[] t2 = new double[group]; 24 25 for (int j = 0; j < group; j++) { 26 t1[j] = g(x0[0], u[j], sigma1[j], p[j]); 27 t2[j] = g(x0[0], u[j], sigma2[j], p[j]); 28 } 29 Arrays.sort(t1); 30 Arrays.sort(t2); 31 32 return abs(t1[t1.length - 1] - t1[t1.length - 2]) > abs(t2[t2.length - 1] - t2[t2.length - 2]) ? 33 x.length : x.length - 1; 34 } 35 }
下面是math包里的内容
1 package math; 2 3 import java.util.Arrays; 4 5 public class M { 6 public static double[][] raw = { 7 {0.011, 1.03, -0.21, 1.36, 2.17, 0.14}, 8 {1.27, 1.28, 0.08, 1.41, 1.45, -0.38}, 9 {0.13, 3.12, 0.16, 1.22, 0.99, 0.69}, 10 {-0.21, 1.23, -0.11, 2.46, 2.19, 1.31}, 11 {-2.18, 1.39, -0.19, 0.68, 0.79, 0.87}, 12 {0.34, 1.96, -0.16, 2.51, 3.22, 1.35}, 13 {-1.38, 0.94, 0.45, 0.60, 2.44, 0.92}, 14 {-1.02, 0.82, 0.17, 0.64, 0.13, 0.97}, 15 {-1.44, 2.31, 0.14, 0.85, 0.58, 0.99}, 16 {0.26, 1.94, 0.08, 0.66, 0.51, 0.88}, 17 18 }; 19 20 // 输入:x[i][j]第i个样本j类的向量,group类数量,len0维度 21 // 输出:sigma[i]第i组的协方差矩阵 22 public static double[][][] getSigma(double[][][] x, int group, int len0,int div) { 23 double[][] u = getU(x, group, len0); 24 double[][][] sigma = new double[group][len0][len0]; 25 26 //1/n*sigma(xk-u‘)*(xk-u‘).T 27 for (int i = 0; i < group; i++) { 28 SUB(x, u[i], i); 29 double[][] t = new double[len0][len0]; 30 for (int j = 0; j < x.length; j++) ADD(t, cov0(x[j][i])); 31 DIVI(div, t); 32 sigma[i] = t; 33 } 34 return sigma; 35 } 36 37 38 39 // 输入:向量a 40 // 输出:a的方差 41 public static double[][] cov0(double[] a) { 42 double[][] row = new double[1][a.length]; 43 row[0] = a; 44 double[][] col = new double[a.length][1]; 45 for (int i = 0; i < a.length; i++) col[i][0] = a[i]; 46 47 return mult(col, row); 48 } 49 50 51 // 输入:x[i][j]第i个样本j类的向量,group类数量,len0维度 52 // 输出:u[i]第i组的均值向量 53 public static double[][] getU(double[][][] x, int group, int len0) { 54 double[][] u = new double[group][len0]; 55 // 1/n*sigma(xk) 56 for (int i = 0; i < group; i++) { 57 double[] t = new double[len0]; 58 for (int j = 0; j < x.length; j++) ADD(t, x[j][i]); 59 DIVI(x.length, t); 60 u[i] = t; 61 } 62 return u; 63 } 64 65 66 // 输入:样本X,group类总数,len0维度 67 // 输出:x[i][j]样本i的j类的向量 68 public static double[][][] ini(double[][] X, int group, int len0) { 69 double[][][] ret = new double[X.length][group][]; 70 for (int i = 0; i < X.length; i++) { 71 for (int j = 0; j < group; j++) { 72 int s = j * len0, e = s + len0; 73 double[] t = new double[len0]; 74 for (int z = s, p = 0; z < e; z++, p++) t[p] = X[i][z]; 75 ret[i][j] = t; 76 } 77 } 78 return ret; 79 } 80 81 // ------------------------工具方法----------------------------------- 82 83 84 // 利用副作用,把SUB的col列取出,-=b 85 public static void SUB(double[][][] SUB, double[] b, int col) { 86 for (int i = 0; i < SUB.length; i++) { 87 for (int j = 0; j < SUB[0][0].length; j++) { 88 SUB[i][col][j] -= b[j]; 89 } 90 } 91 } 92 93 public static double[] sub(double[] x, double[] u) { 94 double[] ret = new double[x.length]; 95 for (int i = 0; i < x.length; i++) { 96 ret[i] = x[i] - u[i]; 97 } 98 return ret; 99 } 100 101 102 // 利用副作用,ALL+=b 103 public static void ADD(double[] ALL, double[] b) { 104 for (int i = 0; i < ALL.length; i++) { 105 ALL[i] += b[i]; 106 } 107 } 108 109 // 利用副作用,ALL+=b 110 public static void ADD(double[][] ALL, double[][] b) { 111 for (int i = 0; i < ALL.length; i++) { 112 for (int j = 0; j < ALL[0].length; j++) { 113 ALL[i][j] += b[i][j]; 114 } 115 } 116 } 117 // n*矩阵 118 public static double[][] mult(double n, double[][] a) { 119 double[][] b = new double[a.length][a[0].length]; 120 for (int i = 0; i < a.length; i++) { 121 for (int j = 0; j < a[0].length; j++) { 122 b[i][j] = a[i][j] * n; 123 } 124 } 125 return b; 126 } 127 // 矩阵乘法 128 public static double[][] mult(double[][] a, double[][] b) { 129 double[][] c = new double[a.length][b[0].length]; 130 for (int i = 0; i < a.length; i++) { 131 for (int j = 0; j < b[0].length; j++) { 132 for (int k = 0; k < a[0].length; k++) { 133 c[i][j] += (a[i][k] * b[k][j]); 134 } 135 } 136 } 137 return c; 138 } 139 140 // 矩阵/n 141 public static void DIVI(double n, double[] a) { 142 for (int i = 0; i < a.length; i++) { 143 a[i] /= n; 144 } 145 } 146 147 public static void DIVI(double n, double[][] a) { 148 for (int i = 0; i < a.length; i++) { 149 for (int j = 0; j < a[0].length; j++) { 150 a[i][j] /= n; 151 } 152 } 153 } 154 155 156 157 public static double[][] rowToCol(double[] x) { 158 double[][] ret = new double[x.length][1]; 159 for (int i = 0; i < x.length; i++) { 160 ret[i][0] = x[i]; 161 } 162 return ret; 163 } 164 165 public static double[][] colToRow(double[][] wi) { 166 double[][] ret = new double[1][wi.length]; 167 for (int i = 0; i < wi.length; i++) { 168 ret[0][i] = wi[i][0]; 169 } 170 return ret; 171 } 172 173 174 // 输入:a样本数据,col a要加的col列,all被加数组,col2 加到all的col2列 175 public static void addCols(double[][] a, int col, double[][] all, int col2) { 176 for (int i = 0; i < all.length; i++) all[i][col2] = a[i][col]; 177 } 178 179 public static void print(double[][] u, double[][][] sigma) { 180 System.out.println("uD835uDF07?"); 181 print(u); 182 System.out.println("uD835uDF0E ?2"); 183 print(sigma); 184 System.out.println(); 185 } 186 187 public static void print(double[][][] a) { 188 for (int i = 0; i < a.length; i++) { 189 print(a[i]); 190 System.out.println(); 191 } 192 } 193 194 public static void print(double[][] a) { 195 for (int i = 0; i < a.length; i++) print(a[i]); 196 } 197 198 public static void print(double[] a) { 199 System.out.println(Arrays.toString(a)); 200 } 201 }
1 package math; 2 3 import java.util.Arrays; 4 import java.util.HashMap; 5 6 import static java.lang.Math.log; 7 import static math.Inv.det; 8 import static math.Inv.inv; 9 import static math.M.*; 10 import static math.M.mult; 11 12 public class Classify { 13 14 public static int[] classify(double[][] x0, double[][][] x, double[] p, int group, int len0) { 15 double[][][] sigma = getSigma(x, group, len0, x.length); 16 double[][] u = getU(x, group, len0); 17 18 int[] clas = new int[x.length]; 19 double[] t = new double[group]; 20 21 for (int i = 0; i < x.length; i++) { 22 double min = Double.MIN_VALUE; 23 for (int j = 0; j < group; j++) { 24 t[j] = g(x0[i], u[j], sigma[j], p[j]); 25 if (t[j] > min) { 26 min = t[j]; 27 clas[i] = j + 1; 28 } 29 } 30 31 } 32 return clas; 33 } 34 35 // 输入:x测试点,u某个类的均值向量,sigma某个类的协方差矩阵,p某个类的先验概率 36 // 输出:x的判别函数值(方程对应《模式分类第二版》P32 (66)~(69)) 37 public static double g(double[] x0, double[] u0, double[][] sigma0, double p) { 38 double[][] Wi = mult(-0.5, inv(sigma0)); 39 double[][] t1 = mult(new double[][]{x0}, Wi); 40 double t2 = mult(t1, rowToCol(sub(x0, u0)))[0][0]; 41 42 double[][] wi = mult(inv(sigma0), rowToCol(u0)); 43 double t3 = mult(colToRow(wi), rowToCol(x0))[0][0]; 44 45 double[][] t4 = mult(new double[][]{u0}, inv(sigma0)); 46 double[][] t5 = mult(t4, rowToCol(u0)); 47 double t6 = mult(-0.5, t5)[0][0]; 48 t6 = t6 - 0.5 * log(det(sigma0)) + log(p); 49 50 return t2 + t3 + t6; 51 } 52 }
java里实现inv()和det(),我直接找这位兄弟的:https://blog.csdn.net/qiyu93422/article/details/46921095
以上是关于山东大学 机器学习 实验报告 实验2 模式分类 上机练习的主要内容,如果未能解决你的问题,请参考以下文章