numpy和pandas axis的差异

Posted yitiaodahe

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了numpy和pandas axis的差异相关的知识,希望对你有一定的参考价值。

1.numpy

arr = np.random.randn(5,4)#正态分布数据
print(arr)
print(arr.sum()) # 数组/矩阵中所有元素求和,等价于np.sum(arr)
print(np.sum(arr, axis=0))# 按列去求和; 
print(arr.sum(axis=1))  # 按行去求和;
[[ 0.04154798  0.25697028  2.36239272 -1.72886735]
 [ 0.50448843 -0.63285194  2.9090727   0.61004107]
 [ 0.10730241 -0.13162546 -0.67925053  0.12864452]
 [ 0.04125252 -0.03968486 -0.60453958  0.94637586]
 [ 1.65060502 -0.18266035 -1.06259085  0.18515147]]
4.681774035077944
[ 2.34519635 -0.72985234  2.92508445  0.14134557]
[ 0.93204362  3.39075026 -0.57492907  0.34340393  0.59050528]
2.pandas  
df
 iddatecitycategoryageprice
one 1001 2013-01-02 Beijing 100-A 23 1200.0
two 1002 2013-01-03 NaN 100-B 44 NaN
three 1003 2013-01-04 guangzhou 110-A 54 2133.0
four 1004 2013-01-05 Shenzhen 110-C 32 5433.0
five 1005 2013-01-06 shanghai 210-A 34 NaN
six 1006 2013-01-07 BEIJING 130-F 32 4432.0

 

 

 

 

 

 

df.dropna(axis=1)#针对列向有nan值的情况
 iddatecategoryage
one 1001 2013-01-02 100-A 23
two 1002 2013-01-03 100-B 44
three 1003 2013-01-04 110-A 54
four 1004 2013-01-05 110-C 32
five 1005 2013-01-06 210-A 34
six 1006 2013-01-07 130-F 32

 


以上是关于numpy和pandas axis的差异的主要内容,如果未能解决你的问题,请参考以下文章

numpy 和 pandas 计算中 axis 的一些理解

numpy 和 pandas 计算中 axis 的一些理解

2020-005 pandas与numpy中的字符串处理

为啥 32 位和 64 位 numpy/pandas 之间存在差异

python数据分析模块:numpy、pandas全解

pandas数据分析第二天