AtCoder Grand Contest 025 Problem D

Posted shaokele

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了AtCoder Grand Contest 025 Problem D相关的知识,希望对你有一定的参考价值。

www.cnblogs.com/shaokele/


AtCoder Grand Contest 025 Problem D

  Time Limit: 2 Sec
  Memory Limit: 1024 MB

Description

  Takahashi is doing a research on sets of points in a plane. Takahashi thinks a set (S) of points in a coordinate plane is a good set when (S) satisfies both of the following conditions:
  ? The distance between any two points in (S) is not (sqrt{D1}).
  ? The distance between any two points in (S) is not (sqrt{D2})?.
  Here, (D1) and (D2) are positive integer constants that Takahashi specified.
  Let (X) be a set of points ((i,j)) on a coordinate plane where (i) and (j) are integers and satisfy (0≤i,j<2N).
  Takahashi has proved that, for any choice of (D1) and (D2), there exists a way to choose (N^2) points from (X) so that the chosen points form a good set. However, he does not know the specific way to choose such points to form a good set. Find a subset of (X) whose size is (N^2) that forms a good set.
 

Input

  ? (1≤N≤300)
  ? (1≤D1≤2×105)
  ? (1≤D2≤2×105)
  ? All values in the input are integers.
 
  Input is given from Standard Input in the following format:
  (N) (D_1) (D_2)
  

Output

  Print N2 distinct points that satisfy the condition in the following format:
  (x_1 y_1)
  (x_2 y_2)
  :
  (x_{N^2} y_{N^2})
  Here, (xi,yi) represents the i-th chosen point. (0≤xi,yi<2N) must hold, and they must be integers. The chosen points may be printed in any order. In case there are multiple possible solutions, you can output any.
  

Sample Input 1

  2 1 2
 

Sample Output 1

  0 0
  0 2
  2 0
  2 2
  

Sample Input 2

  3 1 5
 

Sample Output 2

  0 0
  0 2
  0 4
  1 1
  1 3
  1 5
  2 0
  2 2
  2 4
  

题目地址:  AtCoder Grand Contest 025 Problem D

题目大意:

  输? (n, d_1, d_2)
  你要找到 (n^2) 个整点 (x, y) 满? (0 ≤ x, y < 2n)。 并且找到的任意两个点距离,既不是 (sqrt{d1},也不是 sqrt{d2})

  

题解:

  这是个分析题?。
  简单来说,所有距离为 (sqrt{d_1}) 的点连边,可以得到?个?分图。(d_2) 同理。
  这样可以把所有 (4n^2) 个点四分,?定有?块满?条件。
  如果 d mod 2 = 1,如果 (a^2 + b^2 = d),a 和 b ?定?奇?偶,按国际象棋??染?即可。
  如果 d mod 4 = 2,如果 (a^2 + b^2 = d),a 和 b ?定都是奇数,????,????即可。
  如果 d mod 4 = 0,把 2 × 2 的区域看成?个?格?,如此类推,对 d/4 进?如上考虑即可。
  


AC代码

#include <cstdio>
using namespace std;
int n,d1,d2,s;
int f[620][620];
void work(int d){
    int p=0;
    while(d%4==0){
        d/=4;
        p++;
    }
    if(d&1){
        for(int i=0;i<2*n;i++)
            for (int j=0;j<2*n;j++)
                if(((i>>p)+(j>>p))&1)
                    f[i][j]=1;
    }else{
        for(int i=0;i<2*n;i++)
            for(int j=0;j<2*n;j++)
                if((i>>p)&1)
                    f[i][j]=1;
    }
}
int main(){
    scanf("%d%d%d",&n,&d1,&d2);
    work(d1);
    work(d2);
    for(int i=0;i<2*n;i++){
        for(int j=0;j<2*n;j++){
            if(s<n*n && !f[i][j]){
                printf("%d %d
",i,j);
                s++;
            }
        }
    }
    return 0;
}

以上是关于AtCoder Grand Contest 025 Problem D的主要内容,如果未能解决你的问题,请参考以下文章

AtCoder Grand Contest 025 Problem D - Choosing Points

markdown AtCoder Grand Contest 016

AtCoder Grand Contest 005

AtCoder Grand Contest 006

AtCoder Grand Contest 008 题解

AtCoder Grand Contest 019