大数据技术之流量汇总案例

Posted frankdeng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据技术之流量汇总案例相关的知识,希望对你有一定的参考价值。

7.2 流量汇总程序案例

7.2.1 需求1:统计手机号耗费的总上行流量、下行流量、总流量(序列化)

1)需求: 统计每一个手机号耗费的总上行流量、下行流量、总流量

2)数据准备 phone_date.txt

    13726230503    00-FD-07-A4-72-B8:CMCC    120.196.100.82    i02.c.aliimg.com        24    27    2481    24681    200
    13826544101    5C-0E-8B-C7-F1-E0:CMCC    120.197.40.4            4    0    264    0    200
    13926435656    20-10-7A-28-CC-0A:CMCC    120.196.100.99            2    4    132    1512    200
    13926251106    5C-0E-8B-8B-B1-50:CMCC    120.197.40.4            4    0    240    0    200
    18211575961    94-71-AC-CD-E6-18:CMCC-EASY    120.196.100.99    iface.qiyi.com    视频网站    15    12    1527    2106    200
    84138413    5C-0E-8B-8C-E8-20:7DaysInn    120.197.40.4    122.72.52.12        20    16    4116    1432    200
    13560439658    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            18    15    1116    954    200
    15920133257    5C-0E-8B-C7-BA-20:CMCC    120.197.40.4    sug.so.360.cn    信息安全    20    20    3156    2936    200
    13719199419    68-A1-B7-03-07-B1:CMCC-EASY    120.196.100.82            4    0    240    0    200
    13660577991    5C-0E-8B-92-5C-20:CMCC-EASY    120.197.40.4    s19.cnzz.com    站点统计    24    9    6960    690    200
    15013685858    5C-0E-8B-C7-F7-90:CMCC    120.197.40.4    rank.ie.sogou.com    搜索引擎    28    27    3659    3538    200
    15989002119    E8-99-C4-4E-93-E0:CMCC-EASY    120.196.100.99    www.umeng.com    站点统计    3    3    1938    180    200
    13560439658    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            15    9    918    4938    200
    13480253104    5C-0E-8B-C7-FC-80:CMCC-EASY    120.197.40.4            3    3    180    180    200
    13602846565    5C-0E-8B-8B-B6-00:CMCC    120.197.40.4    2052.flash2-http.qq.com    综合门户    15    12    1938    2910    200
    13922314466    00-FD-07-A2-EC-BA:CMCC    120.196.100.82    img.qfc.cn        12    12    3008    3720    200
    13502468823    5C-0A-5B-6A-0B-D4:CMCC-EASY    120.196.100.99    y0.ifengimg.com    综合门户    57    102    7335    110349    200
    18320173382    84-25-DB-4F-10-1A:CMCC-EASY    120.196.100.99    input.shouji.sogou.com    搜索引擎    21    18    9531    2412    200
    13925057413    00-1F-64-E1-E6-9A:CMCC    120.196.100.55    t3.baidu.com    搜索引擎    69    63    11058    48243    200
    13760778710    00-FD-07-A4-7B-08:CMCC    120.196.100.82            2    2    120    120    200
    13560436666    00-FD-07-A4-72-B8:CMCC    120.196.100.82    i02.c.aliimg.com        24    27    2481    24681    200
    13560436666    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99            18    15    1116    954    200

输入数据格式:      

1363157993055     13560436666    C4-17-FE-BA-DE-D9:CMCC    120.196.100.99        18    15    1116        954        200
                   手机号码                                                                   上行流量    下行流量

 输出数据格式

13560436666     1116              954         2070
手机号码        上行流量        下行流量        总流量

3)分析

基本思路:

Map阶段:

(1)读取一行数据,切分字段

(2)抽取手机号、上行流量、下行流量

(3)以手机号为key,bean对象为value输出,即context.write(手机号,bean);

Reduce阶段:

(1)累加上行流量和下行流量得到总流量。

(2)实现自定义的bean来封装流量信息,并将bean作为map输出的key来传输

(3)MR程序在处理数据的过程中会对数据排序(map输出的kv对传输到reduce之前,会排序),排序的依据是map输出的key

所以,我们如果要实现自己需要的排序规则,则可以考虑将排序因素放到key中,让key实现接口:WritableComparable。

然后重写key的compareTo方法。

4)编写mapreduce程序

(1)编写流量统计的bean对象

package com.xyg.mr.flowsum;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;

// bean对象要实例化
public class FlowBean implements Writable {

    private long upFlow;
    private long downFlow;
    private long sumFlow;

    // 反序列化时,需要反射调用空参构造函数,所以必须有
    public FlowBean() {
        super();
    }

    public FlowBean(long upFlow, long downFlow) {
        super();
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    /**
     * 序列化方法
     * 
     * @param out
     * @throws IOException
     */
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    }

    /**
     * 反序列化方法 
注意反序列化的顺序和序列化的顺序完全一致
     * 
     * @param in
     * @throws IOException
     */
    @Override
    public void readFields(DataInput in) throws IOException {
        upFlow = in.readLong();
        downFlow = in.readLong();
        sumFlow = in.readLong();
    }

    @Override
    public String toString() {
        return upFlow + "	" + downFlow + "	" + sumFlow;
    }
}

(2)编写mapreduce主程序

package com.xyg.mr.flowsum;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowCount {

    static class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean> {

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            // 1 将一行内容转成string
            String ling = value.toString();

            // 2 切分字段
            String[] fields = ling.split("	");

            // 3 取出手机号码
            String phoneNum = fields[1];

            // 4 取出上行流量和下行流量
            long upFlow = Long.parseLong(fields[fields.length - 3]);
            long downFlow = Long.parseLong(fields[fields.length - 2]);

            // 5 写出数据
            context.write(new Text(phoneNum), new FlowBean(upFlow, downFlow));
        }
    }

    static class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
        @Override
        protected void reduce(Text key, Iterable<FlowBean> values, Context context)
                throws IOException, InterruptedException {
            long sum_upFlow = 0;
            long sum_downFlow = 0;

            // 1 遍历所用bean,将其中的上行流量,下行流量分别累加
            for (FlowBean bean : values) {
                sum_upFlow += bean.getUpFlow();
                sum_downFlow += bean.getDownFlow();
            }

            // 2 封装对象
            FlowBean resultBean = new FlowBean(sum_upFlow, sum_downFlow);
            context.write(key, resultBean);
        }
    }

    public static void main(String[] args) throws Exception {
        // 1 获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        // 6 指定本程序的jar包所在的本地路径
        job.setJarByClass(FlowCount.class);

        // 2 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(FlowCountMapper.class);
        job.setReducerClass(FlowCountReducer.class);

        // 3 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        // 4 指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        // 5 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

(3)将程序打成jar包,然后拷贝到hadoop集群中。

(4)启动hadoop集群(3)将程序打成jar包,然后拷贝到hadoop集群中。

(5)执行flowcount程序

[[email protected] ~]$ hadoop jar flowcount.jar com.xyg.mr.flowsum.FlowCount /user/root/flowcount/input/ /user/root/flowcount/output

(6)查看结果

[[email protected] ~]$ hadoop fs -cat /user/root/flowcount/output/part-r-00000

13480253104 FlowBean [upFlow=180, downFlow=180, sumFlow=360]

13502468823 FlowBean [upFlow=7335, downFlow=110349, sumFlow=117684]

13560436666 FlowBean [upFlow=1116, downFlow=954, sumFlow=2070]

13560439658 FlowBean [upFlow=2034, downFlow=5892, sumFlow=7926]

13602846565 FlowBean [upFlow=1938, downFlow=2910, sumFlow=4848]

。。。

7.2.2 需求2:将统计结果按照手机归属地不同省份输出到不同文件中(Partitioner)

0)需求:将统计结果按照手机归属地不同省份输出到不同文件中(分区)

1)数据准备  phone_date.txt

2)分析

(1)Mapreduce中会将map输出的kv对,按照相同key分组,然后分发给不同的reducetask。默认的分发规则为:根据key的hashcode%reducetask数来分发

(2)如果要按照我们自己的需求进行分组,则需要改写数据分发(分组)组件Partitioner

自定义一个CustomPartitioner继承抽象类:Partitioner

(3)在job驱动中,设置自定义partitioner: job.setPartitionerClass(CustomPartitioner.class)

3)在需求1的基础上,增加一个分区类

package com.xyg.mr.partitioner;
import java.util.HashMap;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

/**
 * K2 V2 对应的是map输出kv类型
* @author Administrator
*/
public class ProvincePartitioner extends Partitioner<Text, FlowBean> {
    @Override
    public int getPartition(Text key, FlowBean value, int numPartitions) {
// 1 获取电话号码的前三位
        String preNum = key.toString().substring(0, 3);
        
        int partition = 4;
        
        // 2 判断是哪个省
        if ("136".equals(preNum)) {
            partition = 0;
        }else if ("137".equals(preNum)) {
            partition = 1;
        }else if ("138".equals(preNum)) {
            partition = 2;
        }else if ("139".equals(preNum)) {
            partition = 3;
        }
        return partition;
    }
}

2)在驱动函数中增加自定义数据分区设置和reduce task设置

public static void main(String[] args) throws Exception {
        // 1 获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        // 6 指定本程序的jar包所在的本地路径
        job.setJarByClass(FlowCount.class);

        // 8 指定自定义数据分区
        job.setPartitionerClass(ProvincePartitioner.class);
        
        // 9 同时指定相应数量的reduce task
        job.setNumReduceTasks(5); 
        
        // 2 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(FlowCountMapper.class);
        job.setReducerClass(FlowCountReducer.class);

        // 3 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        // 4 指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        // 5 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }

3)将程序打成jar包,然后拷贝到hadoop集群中。

4)启动hadoop集群

5)执行flowcountPartitionser程序

[[email protected] ~]$ hadoop jar flowcountPartitionser.jar com.xyg.mr.partitioner.FlowCount /user/root/flowcount/input /user/root/flowcount/output

6)查看结果

[[email protected] ~]]$ hadoop fs -lsr /

/user/root/flowcount/output/part-r-00000

/user/root/flowcount/output/part-r-00001

/user/root/flowcount/output/part-r-00002

/user/root/flowcount/output/part-r-00003

/user/root/flowcount/output/part-r-00004

7.2.3 需求3:将统计结果按照总流量倒序排序(全排序)

0)需求  根据需求1产生的结果再次对总流量进行排序。

1)数据准备      phone_date.txt

2)分析

(1)把程序分两步走,第一步正常统计总流量,第二步再把结果进行排序

(2)context.write(总流量,手机号)

(3)FlowBean实现WritableComparable接口重写compareTo方法

@Override
public int compareTo(FlowBean o) {
// 倒序排列,从大到小
return this.sumFlow > o.getSumFlow() ? -1 : 1;
}
package com.xyg.mr.sort;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.WritableComparable;

public class FlowBean implements WritableComparable<FlowBean> {

    private long upFlow;
    private long downFlow;
    private long sumFlow;

    // 反序列化时,需要反射调用空参构造函数,所以必须有
    public FlowBean() {
        super();
    }

    public FlowBean(long upFlow, long downFlow) {
        super();
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }

    public void set(long upFlow, long downFlow) {
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    /**
     * 序列化方法
     * @param out
     * @throws IOException
     */
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    }

    /**
     * 反序列化方法 注意反序列化的顺序和序列化的顺序完全一致
     * @param in
     * @throws IOException
     */
    @Override
    public void readFields(DataInput in) throws IOException {
        upFlow = in.readLong();
        downFlow = in.readLong();
        sumFlow = in.readLong();
    }

    @Override
    public String toString() {
        return upFlow + "	" + downFlow + "	" + sumFlow;
    }

    @Override
    public int compareTo(FlowBean o) {
        // 倒序排列,从大到小
        return this.sumFlow > o.getSumFlow() ? -1 : 1;
    }
}

4)Map方法优化为一个对象,reduce方法则直接输出结果即可,驱动函数根据输入输出重写配置即可。3)FlowBean对象在在需求1基础上增加了比较功能

package com.xyg.mr.sort;
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class FlowCountSort {
    static class FlowCountSortMapper extends Mapper<LongWritable, Text, FlowBean, Text>{
        FlowBean bean = new FlowBean();
        Text v = new Text();
        
        @Override
        protected void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            
            // 1 拿到的是上一个统计程序输出的结果,已经是各手机号的总流量信息
            String line = value.toString();
            
            // 2 截取字符串并获取电话号、上行流量、下行流量
            String[] fields = line.split("	");
            String phoneNbr = fields[0];
            
            long upFlow = Long.parseLong(fields[1]);
            long downFlow = Long.parseLong(fields[2]);
            
            // 3 封装对象
            bean.set(upFlow, downFlow);
            v.set(phoneNbr);
            
            // 4 输出
            context.write(bean, v);
        }
    }
    
    static class FlowCountSortReducer extends Reducer<FlowBean, Text, Text, FlowBean>{
        
        @Override
        protected void reduce(FlowBean bean, Iterable<Text> values, Context context)
                throws IOException, InterruptedException {
            context.write(values.iterator().next(), bean);
        }
    }
    
    public static void main(String[] args) throws Exception {
        // 1 获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        // 6 指定本程序的jar包所在的本地路径
        job.setJarByClass(FlowCountSort.class);

        // 2 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(FlowCountSortMapper.class);
        job.setReducerClass(FlowCountSortReducer.class);

        // 3 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);

        // 4 指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        // 5 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        
        Path outPath = new Path(args[1]);
//        FileSystem fs = FileSystem.get(configuration);
//        if (fs.exists(outPath)) {
//            fs.delete(outPath, true);
//        }
        FileOutputFormat.setOutputPath(job, outPath);

        // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

5)将程序打成jar包,然后拷贝到hadoop集群中。

6)启动hadoop集群5)将程序打成jar包,然后拷贝到hadoop集群中。

7)执行flowcountsort程序

[[email protected] module]$ hadoop jar flowcountsort.jar com.xyg.mr.sort.FlowCountSort /user/root/flowcount/output /user/root/flowcount/output_sort

8)查看结果

[[email protected] module]$ hadoop fs -cat /user/flowcount/output_sort/part-r-00000

13502468823 7335 110349 117684

13925057413 11058 48243 59301

13726238888 2481 24681 27162

13726230503 2481 24681 27162

18320173382 9531 2412 11943

7.2.4 需求4:不同省份输出文件内部排序(部分排序)

1)需求   要求每个省份手机号输出的文件中按照总流量内部排序。

2)分析   基于需求3,增加自定义分区类即可。

3)案例实操

(1)增加自定义分区类

package com.xyg.reduce.flowsort;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class FlowSortPartitioner extends Partitioner<FlowBean, Text> {

@Override
public int getPartition(FlowBean key, Text value, int numPartitions) {

int partition = 0;
String preNum = value.toString().substring(0, 3);

if (" ".equals(preNum)) {
partition = 5;
} else {
if ("136".equals(preNum)) {
partition = 1;
} else if ("137".equals(preNum)) {
partition = 2;
} else if ("138".equals(preNum)) {
partition = 3;
} else if ("139".equals(preNum)) {
partition = 4;
}
}
return partition;
 }
}

(2)在驱动类中添加分区类

job.setPartitionerClass(FlowSortPartitioner.class);
job.setNumReduceTasks(5);

以上是关于大数据技术之流量汇总案例的主要内容,如果未能解决你的问题,请参考以下文章

防火墙基础之流量管理与控制

Hadoop二次开发项目案例方案汇总

大数据热门词汇汇总

汇总:生活中大数据分析案例以及背后的技术原理

大数据之Hadoop(MapReduce):Combiner合并案例实操

小程序开发之流量主