Redis应用场景?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Redis应用场景?相关的知识,希望对你有一定的参考价值。

Redis实际应用场景
1、显示最新的项目列表
下面这个语句常用来显示最新项目,随着数据多了,查询毫无疑问会越来越慢。
SELECT FROM fOO WHERE ORDER BY time DESC LIMIT 10
在Web应用中,“列出最新的回复”之类的查询非常普遍,这通常会带来可扩展性问题。这令人沮丧,因为项目本来就是按这个顺序被创建的,但要输出这个顺序却不得不进行排序操作。类似的问题就可以用Redis来解决。比如说,我们的一个Web应用想要列出用户贴出的最新20条评论。在最新的评论边上我们有一个“显示全部”的链接,点击后就可以获得更多的评论。我们假设数据库中的每条评论都有一个唯一的递增的ID字段。我们可以使用分页来制作主页和评论页,使用Redis的模板,每次新评论发表时,我们会将它的ID添加到一个Redis列表:
LPUSH latest.comments <ID>
我们将列表裁剪为指定长度,因此Redis只需要保存最新的5000条评论:
LTRIM latest.comments 0 5000
每次我们需要获取最新评论的项目范围时,我们调用一个函数来完成(使用伪代码):
FUNCTION get_latest_comments(start,num_items):
id list =redis.lrange("latest.comments",start,start+num items -1) IF id list.length<num items
id list = SQL DB("SELECT ... ORDER BY time LIMIT ...") END
RETURN id list END
这里我们做的很简单。在Redis中我们的最新ID使用了常驻缓存,这是一直更新的。但是我们做了限制不能超过5000个ID,因此我们的获取ID函数会一直询问Redis。只有在start/count参数超出了这个范围的时候,才需要去访问数据库。
我们的系统不会像传统方式那样“刷新”缓存,Redis实例中的信息永远是一致的。SQL数据库(或是硬盘上的其他类型数据库)只是在用户需要获取“很远”的数据时才会被触发,而主页或第一个评论页是不会麻烦到硬盘上的数据库了。
参考技术A redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)和zset(有序集合)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步
Replication(树形)
data types(String、Lists、Sorted Sets、Hashes) persistence (snapshot、aof)
很多开发者都认为Redis不可能比Memcached快,Memcached完全基于内存,而Redis具有持久化保存特性,即使是异步的,Redis也不可能比Memcached快。但是测试结果基本是Redis占绝对优势。一直在思考这个原因,目前想到的原因有这几方面。
Libevent。和Memcached不同,Redis并没有选择libevent。Libevent为了迎合通用性造成代码庞大(目前Redis代码还不到libevent的1/3)及牺牲了在特定平台的不少性能。Redis用libevent中两个文件修改实现了自己的epoll event loop(4)。业界不少开发者也建议Redis
参考技术B 做高速缓存,和去中心化场景可以用

redis常用数据结构介绍和业务应用场景分析

参考技术A redis内置了很多常用数据结构,了解这些数据结构的功能和应用场景能够让我们在需求开发时灵活运用来解决实际问题。

String是redis中最基础的数据结构,你可以把它用作缓存最基础的kv(key-value)类型的缓存(value最大为512MB),只需要把需要缓存的对象进行string的编解码即可。另外String也可以保存数值类型的数据,就可以来实现计数功能(redi提供了incr等原子操作)

常见应用场景

List列表更多的时候是把它当成队列使用(最大2^32 - 1个元素),使用入队出队功能,如果来使用它作为各种列表的话,很多时候不具备防重功能在使用的时候不是很方便。

常见应用场景

Set是一种无序不重复的集合,添加删除检查是否存在都是O(1)的时间复杂度。

常见应用场景

hash是一个map结构,可以像存储对象的多个字段一样存储一个key的多类数据。

常见应用场景

redis中的pub/sub可以实现广播功能,类似rocketmq中的broadcast

常见应用场景

除了上述最基本的数据结构外,redis还提供了一些其他的数据结构,有的是需要安装相关redis stack来使用的。

bitmap本质上还是使用的string字符串,不过可以通过bit来进行操作,把这个key的value值想象成bit组成的数组。

常见应用场景

bloomfilter(也叫布隆过滤器)可以理解成一种特殊的set集合,它可以用来判断一个值是否在这个集合中,不过不同于普通的set,它的判断存在一定误判的可能(假阳性),如果bloomfilter判断一个值不在这个集合中,那么一定不在,但是如果判断在,那么有可能不在。

常见应用场景

hyperloglog是一种概率性的去重计数数据结构,可以实现一定精度的去重计数

常见应用场景

geohash可以实现距离计算、距离查询等地理位置相关的功能

常见应用场景

以上是关于Redis应用场景?的主要内容,如果未能解决你的问题,请参考以下文章

redis应用场景

Redis 的主要应用场景都有哪些

Redis 有哪些应用场景?

redis常用数据结构介绍和业务应用场景分析

redis常见应用场景

redis之管道应用场景及源码分析