使用Beautiful Soup

Posted wanglinjie

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用Beautiful Soup相关的知识,希望对你有一定的参考价值。

使用Beautiful Soup

 Beautiful Soup在解析时实际上依赖解析器,它除了支持Python标准库中的html解析器外,还支持一些第三方解析器(比如lxml)。

解析器

使用方法

优势

劣势

Python标准库

BeautifulSoup(markup, "html.parser")

Python的内置标准库、执行速度适中、文档容错能力强

Python 2.7.3及Python 3.2.2之前的版本文档容错能力差

lxml HTML解析器

BeautifulSoup(markup, "lxml")

速度快、文档容错能力强

需要安装C语言库

lxml XML解析器

BeautifulSoup(markup, "xml")

速度快、唯一支持XML的解析器

需要安装C语言库

html5lib

BeautifulSoup(markup, "html5lib")

最好的容错性、以浏览器的方式解析文档、生成HTML5格式的文档

速度慢、不依赖外部扩展

一、lxml解析器有解析HTML和XML的功能,而且速度快,容错能力强,所以先用它来解析。

用户名(1) 技术分享图片

用户名(2)

技术分享图片

 

if item.find_all(class_ = ‘author-link‘):
author = item.find_all(class_ = ‘author-link‘)[0].string
else:
author = item.find_all(class_ = ‘name‘)[0].string

 

另外,还有许多查询方法,其用法与find_all()find()方法完全相同,只不过查询范围不同。

另外,还有许多查询方法,其用法与前面介绍的find_all()、find()方法完全相同,只不过查询范围不同,这里简单说明一下。

 

find_parents()和find_parent():前者返回所有祖先节点,后者返回直接父节点。

find_next_siblings()和find_next_sibling():前者返回后面所有的兄弟节点,后者返回后面第一个兄弟节点。

find_previous_siblings()和find_previous_sibling():前者返回前面所有的兄弟节点,后者返回前面第一个兄弟节点。

find_all_next()和find_next():前者返回节点后所有符合条件的节点,后者返回第一个符合条件的节点。

find_all_previous()和find_previous():前者返回节点后所有符合条件的节点,后者返回第一个符合条件的节点。

 

 

  • 技术分享图片

 

 

既可以为属性值,也可以为文本

q = item.find_all(class_ = ‘bio‘)[0].string


q = item.find_all(class_ = ‘bio‘)[0].attrs[‘title‘]

 1 import requests
 2 import json
 3 from bs4 import BeautifulSoup
 4 
 5 url = https://www.zhihu.com/explore
 6 headers = {
 7     User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36
 8 }
 9 r = requests.get(url, headers=headers)
10 soup = BeautifulSoup(r.text, lxml)
11 explore = {}
12 items = soup.find_all(class_ = explore-feed feed-item)
13 for item in items:
14     question = item.find_all(h2)[0].string
15     #print(question)
16     if item.find_all(class_ = author-link):
17         author = item.find_all(class_ = author-link)[0].string
18     else:
19         author = item.find_all(class_ = name)[0].string
20     #print(author)
21     answer = item.find_all(class_ = content)[0].string
22     #print(answer)
23     #q = item.find_all(class_ = ‘bio‘)[0].string
24     q = item.find_all(class_ = bio)[0].attrs[title]
25     #print(q)
26 
27     explore = {
28         "question" : question,
29         "author" : author,
30         "answer" : answer,
31         "q": q,
32     } 
33 
34     with open("explore.json", "a") as f:
35         #f.write(json.dumps(items, ensure_ascii = False).encode("utf-8") + "
")
36         f.write(json.dumps(explore, ensure_ascii = False) + "
")

 

 

 

     for t in item.find_all(class_ = ‘bio‘):
         q =t.get(‘title‘) 
 1 import requests
 2 import json
 3 from bs4 import BeautifulSoup
 4 
 5 url = https://www.zhihu.com/explore
 6 headers = {
 7     User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36
 8 }
 9 r = requests.get(url, headers=headers)
10 soup = BeautifulSoup(r.text, lxml)
11 explore = {}
12 items = soup.find_all(class_ = explore-feed feed-item)
13 for item in items:
14     question = item.find_all(h2)[0].string
15     #print(question)
16     if item.find_all(class_ = author-link):
17         author = item.find_all(class_ = author-link)[0].string
18     else:
19         author = item.find_all(class_ = name)[0].string
20     #print(author)
21     answer = item.find_all(class_ = content)[0].string
22     #print(answer)
23     #q = item.find_all(class_ = ‘bio‘)[0].string
24     #q = item.find_all(class_ = ‘bio‘)[0].attrs[‘title‘]
25     for t in item.find_all(class_ = bio):
26         q =t.get(title)    
27     print(q)
28 
29     explore = {
30         "question" : question,
31         "author" : author,
32         "answer" : answer,
33         "q": q,
34     } 
35 
36     with open("explore.json", "a") as f:
37         #f.write(json.dumps(items, ensure_ascii = False).encode("utf-8") + "
")
38         f.write(json.dumps(explore, ensure_ascii = False) + "
")

 

 

 

 

二、使用Python标准库中的HTML解析器

 

 

 

 

soup = BeautifulSoup(r.text, ‘html.parser‘)

三、Beautiful Soup还提供了另外一种选择器,那就是CSS选择器。

 使用CSS选择器时,只需要调用select()方法,传入相应的CSS选择器即可。

 







以上是关于使用Beautiful Soup的主要内容,如果未能解决你的问题,请参考以下文章

Python3 爬虫Beautiful Soup库的使用

用 Beautiful Soup 提取 href

Python3网络爬虫:使用Beautiful Soup爬取小说

Beautiful Soup 笔记 1基本使用

Python爬虫利器:Beautiful Soup

从页面中获取所有链接 Beautiful Soup