『计算机视觉』SSD源码学习_基于TensorFlow(待续)
Posted hellcat
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了『计算机视觉』SSD源码学习_基于TensorFlow(待续)相关的知识,希望对你有一定的参考价值。
原项目地址:SSD-Tensorflow
根据README的介绍,该项目收到了tf-slim项目中包含了多种经典网络结构(分类用)的启发,使用了模块化的编程思想,可以替换检查网络的结构,其模块组织如下:
- datasets: 数据及接口,interface to popular datasets (Pascal VOC, COCO, ...) and scripts to convert the former to TF-Records;
- networks: 网络结构定义,definition of SSD networks, and common encoding and decoding methods (we refer to the paper on this precise topic);
- pre-processing: 预处理和数据增强,pre-processing and data augmentation routines, inspired by original VGG and Inception implementations.
项目给提供了两个已训练的VGG网络,输入分别为300和512。
除此之外,还有一个迷你的SSD展示ipynb脚本,可以快读演示预测ssd_notebook。
脚本tf_convert_data.py
将数据转换为一组TF-Record文件,调用示意如下:
DATASET_DIR=./VOC2007/test/ OUTPUT_DIR=./tfrecords python tf_convert_data.py --dataset_name=pascalvoc --dataset_dir=${DATASET_DIR} --output_name=voc_2007_train --output_dir=${OUTPUT_DIR}
脚本caffe_to_tensorflow.py
可以讲caffe的模型转换为checkpoints,供程序使用:
CAFFE_MODEL=./ckpts/SSD_300x300_ft_VOC0712/VGG_VOC0712_SSD_300x300_ft_iter_120000.caffemodel python caffe_to_tensorflow.py --model_name=ssd_300_vgg --num_classes=21 --caffemodel_path=${CAFFE_MODEL}
脚本train_ssd_network.py
用于训练模型,
- 可以自定义训练的明细(dataset, optimiser, hyper-parameters, model, ...)
- 可以载入ckeckpoints后fine-tune
使用VGG-300模型进行微调的示意如下,
DATASET_DIR=./tfrecords TRAIN_DIR=./logs/ CHECKPOINT_PATH=./checkpoints/ssd_300_vgg.ckpt python train_ssd_network.py --train_dir=${TRAIN_DIR} --dataset_dir=${DATASET_DIR} --dataset_name=pascalvoc_2012 --dataset_split_name=train --model_name=ssd_300_vgg --checkpoint_path=${CHECKPOINT_PATH} --save_summaries_secs=60 --save_interval_secs=600 --weight_decay=0.0005 --optimizer=adam --learning_rate=0.001 --batch_size=32
脚本eval_ssd_network.py
使用checkpoint文件来检验训练效果,调用示意如下:
EVAL_DIR=./logs/ CHECKPOINT_PATH=./checkpoints/VGG_VOC0712_SSD_300x300_ft_iter_120000.ckpt python eval_ssd_network.py --eval_dir=${EVAL_DIR} --dataset_dir=${DATASET_DIR} --dataset_name=pascalvoc_2007 --dataset_split_name=test --model_name=ssd_300_vgg --checkpoint_path=${CHECKPOINT_PATH} --batch_size=1
这个脚本可以在训练脚本运行的同时运行,动态的监测当前训练效果,此时命令如下:
EVAL_DIR=${TRAIN_DIR}/eval python eval_ssd_network.py --eval_dir=${EVAL_DIR} --dataset_dir=${DATASET_DIR} --dataset_name=pascalvoc_2007 --dataset_split_name=test --model_name=ssd_300_vgg --checkpoint_path=${TRAIN_DIR} --wait_for_checkpoints=True --batch_size=1 --max_num_batches=500
而且文档描述的很不简单,eval脚本可以监测到GPU空闲,
one can pass to training and validation scripts a GPU memory upper limit such that both can run in parallel on the same device. If some GPU memory is available for the evaluation script, the former can be run in parallel as follows:
脚本ssd_vgg_preprocessing.py、
ssd_vgg_300/512.py
、
ssd_vgg_300/512.py
one may also want to experiment with data augmentation parameters (random cropping, resolution, ...) in ssd_vgg_preprocessing.py
or/and network parameters (feature layers, anchors boxes, ...) in ssd_vgg_300/512.py
以上是关于『计算机视觉』SSD源码学习_基于TensorFlow(待续)的主要内容,如果未能解决你的问题,请参考以下文章
毕业设计 题目:基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别
深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统