氮化镓充电器和其他快充充电器的区别都有哪些?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了氮化镓充电器和其他快充充电器的区别都有哪些?相关的知识,希望对你有一定的参考价值。

1、材质不一样

传统的普通充电器,的基础材料是硅,硅也是电子行业内非常重要的材料。但随着硅的极限逐步逼近,加之随着快充功率的增大,快充头体积也就更大,携带起来非常不方便;一些大功率充电器长时间充电还容易引起充电头发热;因此,寻找新型的代替材料就更加迫切。

氮化镓相比硅,它的性能成倍提升,而且比硅更适合做大功率器件、体积更小、功率密度更大。氮化镓芯片频率远高于硅,有效降低内部变压器等原件体积,同时优秀的散热性能也使内部原件排布可以更加精密,最终完美解决了充电速率和便携性的矛盾。

2、发展不同

硅的开发也到了一定的瓶颈,许多厂商开始努力寻找更合适的替代品。氮化镓是以后要寻找的代替材料。

扩展资料:

氮化镓性质与稳定性

如果遵照规格使用和储存则不会分解。避免接触氧化物,热,水分/潮湿。

GaN在1050℃开始分解:2GaN(s)=2Ga(g)+N2(g)。X射线衍射已经指出GaN晶体属纤维锌矿晶格类型的六方晶系。

在氮气或氦气中当温度为1000℃时GaN会慢慢挥发,证明GaN在较高的温度下是稳定的,在1130℃时它的蒸气压比从焓和熵计算得到的数值低,这是由于有多聚体分子(GaN)x的存在。

GaN不被冷水或热水,稀的或浓的盐酸、硝酸和硫酸,或是冷的40%HF所分解。在冷的浓碱中也是稳定的,但在加热的情况下能溶于碱中。

参考技术A 材质上比普通的快充更加的高级,氮化镓是第三代半导体材料,功率密度更大,体积小,充电速度快,这些都是氮化镓快充的优势倍思的65w氮化镓快充充电还是挺不错的,外壳的做工质感一流,充电的速度快,体积小便携,这款充电器的插头还可以收起来,通电后还有led提示灯。相比起传统的充电器,氮化镓充电器的优点在于体积更小,充电效率却更高。随着生活水平的不断提高,手机已经成为绝大多数人生活中必不可少的一件电子产品。一天当中手机的使用率是非常高的,所以手机经常得一天一充,甚至一天多充,而手机充电自是不可缺少充电器。除了手机之外,其它一些电子产品亦是需要充电,所以有些时候一个插线板还容不下多个充电器。 导致该结果出现的原因除了需要充电的电子产品多之外,其中不乏个别产品的充电器体积过大,太过占空间。比如说笔记本电脑的充电器就相对比较占空间,但是其体积一旦做小就会影响到充电效率。为了兼顾充电速度以及充电器大小这两方面的问题,氮化镓充电器便出现了。氮化镓是一种新型半导体材。氮化镓充电器前景非常明朗,大概率会取代传统充电器。 氮化镓充电器为何能够取代传统的充电器呢,或者说氮化镓充电器都有哪些优势? iWALK 爱沃可作为国际高端智能配件品牌将给大家进行解答。 首先我们知道随着快充功率的增大,快充头体积也就更大。苹果原装5W充电器体积小,但是功率也小;而18W充电器的体积比5W更大,同样的,30W充电器会比18W更大。那有没有新的材料可以保证大功率,小体积呢?显然,氮化镓就是我们一直寻找的这种材料。 充电器 氮化镓的三个特点:开关频率高、禁带宽度大、更低的导通电阻。而应用在充电器上,氮化镓优势更明显。 氮化镓相比传统硅基半导体,有着比硅基半导体出色的击穿能力。 参考技术B 材质不一样是所有不同的根本
传统的普通充电器,它的基础材料是硅,硅也是电子行业内非常重要的材料。但随着硅的极限逐步逼近,硅的开发也到了一定的瓶颈,许多厂商开始努力寻找更合适的替代品。

加之随着快充功率的增大,快充头体积也就更大,携带起来非常不方便;一些大功率充电器长时间充电还容易引起充电头发热;因此,寻找新型的代替材料就更加迫切。

氮化镓(GaN)被称为第三代半导体材料。相比硅,它的性能成倍提升,而且比硅更适合做大功率器件、体积更小、功率密度更大。氮化镓芯片频率远高于硅,有效降低内部变压器等原件体积,同时优秀的散热性能也使内部原件排布可以更加精密,最终完美解决了充电速率和便携性的矛盾。很明显,氮化镓就是我们要寻找的代替材料。

了解了各自的材质特性,氮化镓充电器和普通充电器的区别也就不言而喻了,氮化镓充电器同功率下体积更小,且散热更优秀,轻松实现小体积大功率。

既然氮化镓这么好?为什么不早点用?
原因很简单:之前氮化镓技术不成熟,成本也相对更高!氮化镓充电器最主要的成本来自于MOS功率芯片,昂贵的原材料直接导致了消费级GaN充电器价格偏高,目前市面上的氮化镓充电器基本上是一百多块。不过随着越来越多厂商参与进来,相信技术会越来越成熟,成本下降只是时间问题。

在充电协议上,GaN 充电头目前以PD协议为主,对支持该协议的设备均能进行快充,包括MacBook(以及其他 C 口笔记本)、iPad Pro、iPhone、Switch 等设备。在氮化镓的加持下,相信智能手机的快充功率有望再创新高。

目前市面上的氮化镓充电器大多是长条形设计,插在墙壁开关上的话很容易被数据线牵拉继而松动,因而很多品牌也在尝试不同的设计,看到一些爆料说绿联即将推出的氮化镓充电器将采用正方形设计,目的主要就是为了让重心更稳,墙插/排插都会更稳固,充电不受限制;而且体积跟AirPods Pro一般大小,携带起来也比较方便。
参考技术C 相信最近关心手机行业的朋友们都有注意到“氮化镓(GaN)”,这个名词在近期出现比较频繁。特别是随着小米发布旗下首款65W氮化镓快充充电器之后,“氮化镓”这一名词就开始广泛出现在了大众的视野中。那么,引入了“氮化镓(GaN)”的充电器和传统的普通充电器有什么不一样呢?今天我们就来聊聊。

材质不一样是所有不同的根本

传统的普通充电器,它的基础材料是硅,硅也是电子行业内非常重要的材料。但随着硅的极限逐步逼近,硅的开发也到了一定的瓶颈,许多厂商开始努力寻找更合适的替代品。

加之随着快充功率的增大,快充头体积也就更大,携带起来非常不方便;一些大功率充电器长时间充电还容易引起充电头发热;因此,寻找新型的代替材料就更加迫切。

氮化镓(GaN)被称为第三代半导体材料。相比硅,它的性能成倍提升,而且比硅更适合做大功率器件、体积更小、功率密度更大。氮化镓芯片频率远高于硅,有效降低内部变压器等原件体积,同时优秀的散热性能也使内部原件排布可以更加精密,最终完美解决了充电速率和便携性的矛盾。很明显,氮化镓就是我们要寻找的代替材料。

了解了各自的材质特性,氮化镓充电器和普通充电器的区别也就不言而喻了,氮化镓充电器同功率下体积更小,且散热更优秀,轻松实现小体积大功率。

既然氮化镓这么好?为什么不早点用?

原因很简单:之前氮化镓技术不成熟,成本也相对更高!氮化镓充电器最主要的成本来自于MOS功率芯片,昂贵的原材料直接导致了消费级GaN充电器价格偏高,目前市面上的氮化镓充电器基本上是一百多块。不过随着越来越多厂商参与进来,相信技术会越来越成熟,成本下降只是时间问题。

在充电协议上,GaN 充电头目前以PD协议为主,对支持该协议的设备均能进行快充,包括MacBook(以及其他 C 口笔记本)、iPad Pro、iPhone、Switch 等设备。在氮化镓的加持下,相信智能手机的快充功率有望再创新高。

目前市面上的氮化镓充电器大多是长条形设计,插在墙壁开关上的话很容易被数据线牵拉继而松动,因而很多品牌也在尝试不同的设计,看到一些爆料说绿联即将推出的氮化镓充电器将采用正方形设计,目的主要就是为了让重心更稳,墙插/排插都会更稳固,充电不受限制;而且体积跟AirPods Pro一般大小,携带起来也比较方便。

现在,你们对氮化镓充电器的认识是不是又更进了一步?对于氮化镓充电器,你有什么看法呢?打算购买吗?评论区一起聊聊叭~
参考技术D 1、材质不一样传统的普通充电器,的基础材料是硅,硅也是电子行业内非常重要的材料。但随着硅的极限逐步逼近,加之随着快充功率的增大,快充头体积也就更大,携带起来非常不方便;一些大功率充电器长时间充电还容易引起充电头发热;因此,寻找新型的代替材料就更加迫切。氮化镓相比硅,它的性能成倍提升,而且比硅更适合做大功率器件、体积更小、功率密度更大。氮化镓芯片频率远高于硅,有效降低内部变压器等原件体积,同时优秀的散热性能也使内部原件排布可以更加精密,最终完美解决了充电速率和便携性的矛盾。2、发展不同硅的开发也到了一定的瓶颈,许多厂商开始努力寻找更合适的替代品。氮化镓是以后要寻找的代替材料。扩展资料:氮化镓性质与稳定性如果遵照规格使用和储存则不会分解。避免接触氧化物,热,水分/潮湿。GaN在1050℃开始分解:2GaN(s)=2Ga(g)+N2(g)。X射线衍射已经指出GaN晶体属纤维锌矿晶格类型的六方晶系。在氮气或氦气中当温度为1000℃时GaN会慢慢挥发,证明GaN在较高的温度下是稳定的,在1130℃时它的蒸气压比从焓和熵计算得到的数值低,这是由于有多聚体分子(GaN)x的存在。GaN不被冷水或热水,稀的或浓的盐酸、硝酸和硫酸,或是冷的40%HF所分解。在冷的浓碱中也是稳定的,但在加热的情况下能溶于碱中。

18W PD快充充电器优势方案

在2019(春季)USB PD&Type-C亚洲大会,芯朋微应用技术总监王旷先生发布了《如何让PD快充及无线充方案更精简?》主题演讲,并现场发布了一套外围极简、极具成本优势的18W USB PD快充充电器方案PN8161+PN8307H。
技术图片

18W USB PD充电器方案原边芯片PN8161采用SOP8封装,内部集成了准谐振工作的电流模式控制器和功率MOSFET,专用于高性能、外围元器件精简的交直流转换开关电源。该芯片提供了极为全面和性能优异的智能化保护功能,包括输出过压保护、周期式过流保护、过载保护、软启动功能。通过QR-PWM、QR-PFM、Burst-mode的三种模式混合调制技术和特殊器件低功耗结构技术实现了超低的待机功耗、全电压范围下的最佳效率。频率调制技术和SoftDriver技术充分保证良好的EMI表现,集成市电Brown in/out、AC OVP等保护,可节省启动电阻、CS侦测网络、驱动及分离MOSFET等近颗10元器件;
技术图片
18W PD充电器方案副边芯片PN8307H同样采用SOP8封装,包括同步整流控制器及高雪崩能力功率MOSFET,用于在高性能AC/DC反激系统中替代次级整流肖特基二极管。PN8307H内置电压降极低的功率MOSFET以提高电流输出能力,提升转换效率,使得系统效率可以满足6级能效的标准,并留有足够的裕量。PN8307H集成了极为全面的辅助功能,包含输出欠压保护、防误开启、最小导通时间等功能,并通过控制策略创新降低SR反向电压至50V以内,显著降低方案成本。
技术图片
18W USB PD充电器整体方案方案支持90~265V市电输入,输出电压范围3.3-12V,电流分别是5V/3A、9V/2A、12V/1.5A,输出总功率为18W,同时,该方案效率满足CoC V5 Tier 2,拥有卓越的EMC性能;SR与协议芯片分开,协议芯片可根据客户的需求任意搭配,易实现最简通信模块,整体方案简洁、灵活。
技术图片
目前,骊微电子供应的基于PN8161+PN8307H 18W USB PD快充充电器方案已经量产出货,并得到看客户的高度认可和支持,拥有更高效的供电能力,传输速率快,有效的解决了手机快速充电续航等问题,如果需要产品的详细资料,可向骊微电子申请。。。。

以上是关于氮化镓充电器和其他快充充电器的区别都有哪些?的主要内容,如果未能解决你的问题,请参考以下文章

qc3.0快充啥意思

QC3.0 双向快充充电宝和普通充电宝有啥区别?

Transphorm联手Salom推出符合高通Quick Charge 5标准的100瓦 USB-C PD PPS充电器

qc充电宝是啥意思啊

接口测试的概念

pd快充和qc快充的区别