设101×104×107×…×2009=A×10K次方这里AK都是正整数那么k的最大值为( )

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了设101×104×107×…×2009=A×10K次方这里AK都是正整数那么k的最大值为( )相关的知识,希望对你有一定的参考价值。

k 的最大值就是乘积的末尾 0 的个数,
也就是乘式中因数 5 的个数(因为 2 的个数多于 5 的个数,且 2×5=10),
左边 = 2009!/ 100!,
2009/5=401(取整,下同),
401/5=80,
80/5=16,
16/5=3,
100/5=20,
20/5=4,
所以 k 最大值=(401+80+16+3) - (20+4)
=476。追答

哦错了,看成连乘积了。

左边含因数 5 的有:
110×125×140×....×2000,共 127 个,
每个都除以 5 后是:
22×25×28×...×400,
其中含因数 5 的有:
25×40×55×...×400,
共 26 个,
同理,每个除以 5 后还含有因数 5 的有:。
5×20×35×50×65×80,
共 6 个,其中的 50 除以 5 后仍有因数 5,
所以 k 最大值为 127+26+6+1=160。

参考技术A BIAS0:= (C-MA(C,2))/MA(C,2)*100;
BIAS1 := (C-MA(C,12))/MA(C,12)*100;
BIAS2 := (C-MA(C,26))/MA(C,26)*100;
BIAS3 := (C-MA(C,48))/MA(C,48)*100;
HXL:=V/CAPITAL*100;
D1:=INDEXC;
D2:=MA(D1,56);
DR2:=D1/D2<0.94;
E1:=(C-HHV(C,12))/HHV(C,12)*10;
E2:=(C-REF(C,26))/REF(C,26)*10;

任意两点最短路径 最短路之floyd

 

本人水平有限,题解不到为处,请多多谅解

 

本蒟蒻谢谢大家观看

 

 

floyd算法:

设D[k,i,j]表示“经过若干个编号不超过k的节点” 从i到j的最短路径长度

D[k,i,j]=min(D[k-1,i,j],D[k-1,i,k]+D[k-1,k,j]);

初始为D[0,i,j]=A[i,j];A为邻接矩阵

设有向图G=(V,E),V为点集,E为边集,(x,y)表示一条从x到y的有向图,其边权(或称长度)为W(x,y)。设n=|V|,m=|E|,邻接矩阵A是一个n*n的矩阵。

A的定义如下:

A[i,j]={  0   i=j

     w(i,j)  (i,j)属于E

     +∞   (i,j)不属于E

    }

所以k为阶段,所以必须置于最外层循环中

省略k这一维之后的DP

D[i,j]=min(D[i,k]+D[k,j]);

最终D[i,j]为i到j的最短路径长度

 

 模板如下:

 

code:

 1 #include<bits/stdc++.h>
 2 #pragma GCC optimize(3)
 3 
 4 using namespace std;
 5 int n,m;
 6 int f[310][310];
 7 inline int read(){
 8     int x=0,f=1;char ch=getchar();
 9     while(!isdigit(ch)){if(ch==-)f=-1;ch=getchar();}
10     while(isdigit(ch)){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
11     return x*f;
12 }
13 inline void write(int x)
14 {
15     if(x<0)x=-x,putchar(-);
16     if(x>9)write(x/10);
17     putchar(x%10+0);
18 }
19 int main()
20 {
21     memset(f,0x3f,sizeof(f));//初始距离最大 
22     for(int i=1;i<=n;i++)f[i][i]=0;//自己到自己的距离为0 
23     n=read(),m=read();
24     for(int i=1,x,y,z;i<=m;i++){
25         x=read(),y=read(),z=read();
26         f[x][y]=min(f[x][y],z);//建邻接矩阵 
27     }
28     for(int k=1;k<=n;k++){
29         for(int i=1;i<=n;i++){
30             for(int j=1;j<=n;j++){
31                 f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
32             }
33         }
34     }
35     return 0;
36 }

应用:

传递闭包

 

code:

 1 #include<bits/stdc++.h>
 2 #pragma GCC optimize(3)
 3 
 4 using namespace std;
 5 int n,m;
 6 bool f[310][310];
 7 inline int read(){
 8     int x=0,f=1;char ch=getchar();
 9     while(!isdigit(ch)){if(ch==-)f=-1;ch=getchar();}
10     while(isdigit(ch)){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
11     return x*f;
12 }
13 inline void write(int x)
14 {
15     if(x<0)x=-x,putchar(-);
16     if(x>9)write(x/10);
17     putchar(x%10+0);
18 }
19 int main()
20 {
21     for(int i=1;i<=n;i++)f[i][i]=1; 
22     n=read(),m=read();
23     for(int i=1,x,y,z;i<=m;i++){
24         x=read(),y=read(),z=read();
25         f[x][y]=f[y][x]=1;
26     }
27     for(int k=1;k<=n;k++){
28         for(int i=1;i<=n;i++){
29             for(int j=1;j<=n;j++){
30                 f[i][j]|=f[i][k]&f[k][j];
31             }
32         }
33     }
34     return 0;
35 }

 

以上是关于设101×104×107×…×2009=A×10K次方这里AK都是正整数那么k的最大值为( )的主要内容,如果未能解决你的问题,请参考以下文章

spark als scala实现

如果有104个频繁1-项集,则Apriori算法需要产生多达107个候选2-项集,并累计和检查他们的频繁性。

java 知识点突击-(101-110)

PTA 程序设计天梯赛(101~120题)

LeetCode刷题模版:101 - 110

LeetCode刷题模版:101 - 110