在spss线性回归中,t、R、R平方、F分别代表啥,它们取值范围是多少表示啥意思哈~~~~我快纠结死了~~~

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在spss线性回归中,t、R、R平方、F分别代表啥,它们取值范围是多少表示啥意思哈~~~~我快纠结死了~~~相关的知识,希望对你有一定的参考价值。

R表示的是拟合优度,它是用来衡量估计的模型对观测值的拟合程度。它的值越接近1说明模型越好。但是,你的R值太小了。
T的数值表示的是对回归参数的显著性检验值,它的绝对值大于等于ta/2(n-k)(这个值表示的是根据你的置信水平,自由度得出的数值)时,就拒绝原假设。
即认为在其他解释变量不变的情况下,解释变量X对被解释变量Y的影响是显著的。
F的值是回归方程的显著性检验,表示的是模型中被解释变量与所有解释变量之间的线性关系在总体上是否显著做出推断。若F>Fa(k-1,n-k),则拒绝原假设。
即认为列入模型的各个解释变量联合起来对被解释变量有显著影响,反之,则无显著影响。
如果,你只改R值,我想是可以看的出来的。你的F的值和T的值都是有问题的,如果只改R值,怎么可能在F的值和T的值都不合理的情况下,拟合优度却突然变的很高。

扩展资料
线性回归的回归系数:
一般地,要求这个值大于5%。对大部分的行为研究者来讲,最重要的是回归系数。年龄增加1个单位,文档的质量就下降
-.1020986个单位,表明年长的人对文档质量的评价会更低。
这个变量相应的t值是
-2.10,绝对值大于2,p值也<0.05,所以是显著的。结论是,年长的人对文档质量的评价会更低,这个影响是显著的。
相反,领域知识越丰富的人,对文档的质量评估会更高,但是这个影响不是显著的。这种对回归系数的理解就是使用回归分析进行假设检验的过程。
参考资料来源:百度百科-线性回归
参考技术A 首先来说明各个符号,B也就是beta,代表回归系数,标准化的回归系数代表自变量也就是预测变量和因变量的相关,为什么要标准化,因为标准化的时候各个自变量以及因变量的单位才能统一,使结果更精确,减少因为单位不同而造成的误差。T值就是对回归系数的t检验的结果,绝对值越大,sig就越小,sig代表t检验的显著性,在统计学上,sig<0.05一般被认为是系数检验显著,显著的意思就是你的回归系数的绝对值显著大于0,表明自变量可以有效预测因变量的变异,做出这个结论你有5%的可能会犯错误,即有95%的把握结论正确。
回归的检验首先看anova那个表,也就是F检验,那个表代表的是对你进行回归的所有自变量的回归系数的一个总体检验,如果sig<0.05,说明至少有一个自变量能够有效预测因变量,这个在写数据分析结果时一般可以不报告
然后看系数表,看标准化的回归系数是否显著,每个自变量都有一个对应的回归系数以及显著性检验
最后看模型汇总那个表,R方叫做决定系数,他是自变量可以解释的变异量占因变量总变异量的比例,代表回归方程对因变量的解释程度,报告的时候报告调整后的R方,这个值是针对自变量的增多会不断增强预测力的一个矫正(因为即使没什么用的自变量,只要多增几个,R方也会变大,调整后的R方是对较多自变量的惩罚),R可以不用管,标准化的情况下R也是自变量和因变量的相关
希望对您有用

spss回归分析结果图,帮忙看一下,麻烦详细地解释解释

非常感谢!!!所有的分都在这里了~~特别是显著性、拟合度之类的,要怎么看?

R平方就是拟合优度指标,代表了回归平方和(方差分析表中的0.244)占总平方和(方差分析表中的0.256)的比例,也称为决定系数。你的R平方值为0.951,表示X可以解释95.1%的Y值,拟合优度很高,尤其是在这么大的样本量(1017对数据点)下更是难得。

系数表格列出了自变量的显著性检验结果(使用单样本T检验)。截距项(0.000006109)的显著性为0.956(P值),表明不能拒绝截距为0的原假设;回归系数(X项)为0.908,其显著性为0.000(表明P值小于0.0005,而不是0。想看到具体的数值,可以双击该表格,再把鼠标定位于对应的格子),拒绝回归系数0.908(X项)为0的原假设,也就是回归系数不为0;标准化回归系数用于有多个自变量情况下的比较,标准化回归系数越大,该自变量的影响力越大。由于你的数据仅有一个自变量,因此不需要参考这项结果。

对于线性回归,我在百度还有其他的回答,你可以搜索进行补充。追问

还有几个问题:
R方大于多少表示拟合性好?
F值是指什么?后面的sig.又指什么?
最后一个表可以表明自变量和因变量显著相关吗?

追答

1、一般认为,相关系数达到0.1为小效应(R方0.01),0.3为中等R方0.09),0.5为大(R方0.25),这是针对自然科学的一般界限,不一定适用于你的学科。
2、在线性回归中,F值为方差分析的结果,是一个对整个回归方程的总体检验,指的是整个回归方程有没有使用价值(与随机瞎猜相比),其F值对应的Sig值小于0.05就可以认为回归方程是有用的。注意,这是对多个自变量的总体检验,而不是单个自变量(单个自变量在系数表中,为单样本T检验),由于你的数据只有一个自变量自变量,因此其结果与单变量相同。
3、确实,最后一个表可以表明自变量和因变量显著相关(因为Sig值为0.000).

参考技术A 首先来说明各个符号,B也就是beta,代表回归系数,标准化的回归系数代表自变量也就是预测变量和因变量的相关,为什么要标准化,因为标准化的时候各个自变量以及因变量的单位才能统一,使结果更精确,减少因为单位不同而造成的误差。T值就是对回归系数的t检验的结果,绝对值越大,sig就越小,sig代表t检验的显著性,在统计学上,sig<0.05一般被认为是系数检验显著,显著的意思就是你的回归系数的绝对值显著大于0,表明自变量可以有效预测因变量的变异,做出这个结论你有5%的可能会犯错误,即有95%的把握结论正确。
回归的检验首先看anova那个表,也就是F检验,那个表代表的是对你进行回归的所有自变量的回归系数的一个总体检验,如果sig<0.05,说明至少有一个自变量能够有效预测因变量,这个在写数据分析结果时一般可以不报告
然后看系数表,看标准化的回归系数是否显著,每个自变量都有一个对应的回归系数以及显著性检验
最后看模型汇总那个表,R方叫做决定系数,他是自变量可以解释的变异量占因变量总变异量的比例,代表回归方程对因变量的解释程度,调整后的R方,这个值是针对自变量的增多会不断增强预测力的一个矫正(因为即使没什么用的自变量,只要多增几个,R方也会变大,调整后的R方是对较多自变量的惩罚),R可以不用管,就是R方开根号。
以及这些都是理论讲解,其实是需要把各个指标连贯起来写成分析才好,可以使用网站在线spss就是spssau里面有智能化文字分析,里面默认就有智能文字分析出来,而且网页使用也非常方便,里面会把上述中需要的指标进行汇总成表格,直接就能使用,非常便捷。
参考技术B 拟合程度:调整的R方,0.951,显著;
方程的显著性:Anova方差检验(F检验),P值=0,方差不具有齐性,说明变量存在差异,适合回归;
系数的显著性检验:T检验:常数项的P值=0.956,接受常数项为0的原假设,方程的常数项为0;
X的系数检验P值=0,拒绝系数为0的原假设,变量X的系数为0.98.
参考技术C 模型是显著的
x也是显著的
我替别人做这类的数据分析蛮多的

以上是关于在spss线性回归中,t、R、R平方、F分别代表啥,它们取值范围是多少表示啥意思哈~~~~我快纠结死了~~~的主要内容,如果未能解决你的问题,请参考以下文章

线性回归分析其中“β、 T 、F”分别是啥含义?

spss 回归中 r值 f值 多大

excel数据分析线性回归中MS,SS,F,DF分别是啥意思

spss回归分析结果图,帮忙看一下,麻烦详细地解释解释

SPSS 多元线性回归结果中,系数模型下的1,B,t,Sig.分别啥意思。在线等!!急求高手解答!!

统计学中的F值、P值和r分别表示啥意思,怎么求