some transcripts quantification brief comprehensions

Posted beckygogogo

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了some transcripts quantification brief comprehensions相关的知识,希望对你有一定的参考价值。

技术分享图片

 技术分享图片

 

Some biases in the standard rnaseq analysis

技术分享图片

 

 有参拼接:Stringtie 、 Cufflinks and Traph

技术分享图片

flow network algorithm : maximal and minimal methods respectively

 无参组装:Trinity

技术分享图片

clustering by K-mers

salmon: as for now the best performance software 

技术分享图片

 

DAG:有向无环图 

技术分享图片技术分享图片

bagging是减少variance,而boosting是减少bias

 技术分享图片

High variance 是model过于复杂overfit,记住太多细节noise,受outlier影响很大;high bias是underfit,model过于简单,cost function不够好。
A- bagging随机选取data的subset,outlier因为比例比较低,参与model training的几率也比较低,所以bagging降低了outliers和noise对model的影响,所以降低了variance。
B-boosting参zh Bright的答案,minimize loss function by definition minimize bias.
==========================================================
==========================================================
Streaming fragment assignment for real-time analysis of sequencing experiments

流形碎片的实时测序实验

技术分享图片

TIPS:

在估计丰度时候很容易用错或者是正确使用与否是很关键的一步:

RPKM:Reads Per Kilobase of exon modelper Million mapped reads (每千个碱基的转录每百万映射读取的reads),主要用来对单端测序(single-end RNA-seq)进行定量的方法。
RPKM= total exon reads/ (mapped reads (Millions) * exon length(KB))

 

FPKM:

Fragments Per Kilobase of exon model per Million mapped fragments(每千个碱基的转录每百万映射读取的fragments),主要是针对pair-end测序表达量进行计算

 

TPM:

Transcripts Per Kilobase of exonmodel per Million mapped reads (每千个碱基的转录每百万映射读取的Transcripts),优化的RPKM计算方法,可以用于同一物种不同组织的比较。
TPM (推荐软件,RSEM) 的计算公式:

TPMi={( Ni/Li )*1000000 } / sum( Ni/Li+……..+ Nm/Lm )

 

CPM/RPM:

Reads/Counts of exon model per Million mapped reads (每百万映射读取的reads).
RPM的计算公式:
RPM=total exon reads / mapped reads (Millions)

 








以上是关于some transcripts quantification brief comprehensions的主要内容,如果未能解决你的问题,请参考以下文章

Quantifier 操作

6-7 Quantifiers

Rational 工具 Purify/Quantify 查找 pdb 文件

A strategy to quantify embedding layer

Flink报错Option not applicable to singleton quantifier

Aizu2969 Universal and Existential Quantifiers