网络结构

Posted ymjyqsx

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了网络结构相关的知识,希望对你有一定的参考价值。

name: "vgg_1/8"
layer {
  name: "data"
  type: "AnnotatedData"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    mean_value: 104.0
    mean_value: 117.0
    mean_value: 123.0
    resize_param {
      prob: 1.0
      resize_mode: WARP
      height: 352
      width: 704
      interp_mode: LINEAR
      interp_mode: AREA
      interp_mode: NEAREST
      interp_mode: CUBIC
      interp_mode: LANCZOS4
    }
    emit_constraint {
      emit_type: CENTER
    }
    distort_param {
      brightness_prob: 0.5
      brightness_delta: 32.0
      contrast_prob: 0.5
      contrast_lower: 0.5
      contrast_upper: 1.5
      hue_prob: 0.5
      hue_delta: 18.0
      saturation_prob: 0.5
      saturation_lower: 0.5
      saturation_upper: 1.5
      random_order_prob: 0.0
    }
    expand_param {
      prob: 0.5
      max_expand_ratio: 4.0
    }
  }
  data_param {
    source:"examples/cityscapes/cityscapes_train_lmdb"
    batch_size: 1
    backend: LMDB
  }
  annotated_data_param {
    batch_sampler {
      max_sample: 1
      max_trials: 1
    }
    batch_sampler {
      sampler {
        min_scale: 0.300000011921
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.10000000149
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.300000011921
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.300000011921
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.300000011921
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.5
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.300000011921
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.699999988079
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.300000011921
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        min_jaccard_overlap: 0.899999976158
      }
      max_sample: 1
      max_trials: 50
    }
    batch_sampler {
      sampler {
        min_scale: 0.300000011921
        max_scale: 1.0
        min_aspect_ratio: 0.5
        max_aspect_ratio: 2.0
      }
      sample_constraint {
        max_jaccard_overlap: 1.0
      }
      max_sample: 1
      max_trials: 50
    }
    label_map_file: "data/cityscapes/labelmap_cityscapes.prototxt"
  }
}
layer {
  name: "conv1_1"
  type: "Convolution"
  bottom: "data"
  top: "conv1_1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 8
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu1_1"
  type: "ReLU"
  bottom: "conv1_1"
  top: "conv1_1"
}
layer {
  name: "conv1_2"
  type: "Convolution"
  bottom: "conv1_1"
  top: "conv1_2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 8
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu1_2"
  type: "ReLU"
  bottom: "conv1_2"
  top: "conv1_2"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv1_2"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2_1"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2_1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 16
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu2_1"
  type: "ReLU"
  bottom: "conv2_1"
  top: "conv2_1"
}
layer {
  name: "conv2_2"
  type: "Convolution"
  bottom: "conv2_1"
  top: "conv2_2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 16
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu2_2"
  type: "ReLU"
  bottom: "conv2_2"
  top: "conv2_2"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv2_2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv3_1"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3_1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu3_1"
  type: "ReLU"
  bottom: "conv3_1"
  top: "conv3_1"
}
layer {
  name: "conv3_2"
  type: "Convolution"
  bottom: "conv3_1"
  top: "conv3_2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu3_2"
  type: "ReLU"
  bottom: "conv3_2"
  top: "conv3_2"
}
layer {
  name: "conv3_3"
  type: "Convolution"
  bottom: "conv3_2"
  top: "conv3_3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu3_3"
  type: "ReLU"
  bottom: "conv3_3"
  top: "conv3_3"
}
layer {
  name: "pool3"
  type: "Pooling"
  bottom: "conv3_3"
  top: "pool3"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv4_1"
  type: "Convolution"
  bottom: "pool3"
  top: "conv4_1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu4_1"
  type: "ReLU"
  bottom: "conv4_1"
  top: "conv4_1"
}
layer {
  name: "conv4_2"
  type: "Convolution"
  bottom: "conv4_1"
  top: "conv4_2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu4_2"
  type: "ReLU"
  bottom: "conv4_2"
  top: "conv4_2"
}
layer {
  name: "conv4_3"
  type: "Convolution"
  bottom: "conv4_2"
  top: "conv4_3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu4_3"
  type: "ReLU"
  bottom: "conv4_3"
  top: "conv4_3"
}
layer {
  name: "pool4"
  type: "Pooling"
  bottom: "conv4_3"
  top: "pool4"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv5_1"
  type: "Convolution"
  bottom: "pool4"
  top: "conv5_1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu5_1"
  type: "ReLU"
  bottom: "conv5_1"
  top: "conv5_1"
}
layer {
  name: "conv5_2"
  type: "Convolution"
  bottom: "conv5_1"
  top: "conv5_2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu5_2"
  type: "ReLU"
  bottom: "conv5_2"
  top: "conv5_2"
}
layer {
  name: "conv5_3"
  type: "Convolution"
  bottom: "conv5_2"
  top: "conv5_3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu5_3"
  type: "ReLU"
  bottom: "conv5_3"
  top: "conv5_3"
}
layer {
  name: "pool5"
  type: "Pooling"
  bottom: "conv5_3"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "fc6"
  type: "Convolution"
  bottom: "pool5"
  top: "fc6"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}
layer {
  name: "fc7"
  type: "Convolution"
  bottom: "fc6"
  top: "fc7"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 128
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}
layer {
  name: "conv6_1"
  type: "Convolution"
  bottom: "fc7"
  top: "conv6_1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 32
    pad: 0
    kernel_size: 1
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv6_1_relu"
  type: "ReLU"
  bottom: "conv6_1"
  top: "conv6_1"
}
layer {
  name: "conv6_2"
  type: "Convolution"
  bottom: "conv6_1"
  top: "conv6_2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    stride: 2
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv6_2_relu"
  type: "ReLU"
  bottom: "conv6_2"
  top: "conv6_2"
}
layer {
  name: "conv4_3_norm_mbox_loc"
  type: "Convolution"
  bottom: "conv4_3"
  top: "conv4_3_norm_mbox_loc"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 12
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv4_3_norm_mbox_loc_perm"
  type: "Permute"
  bottom: "conv4_3_norm_mbox_loc"
  top: "conv4_3_norm_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv4_3_norm_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv4_3_norm_mbox_loc_perm"
  top: "conv4_3_norm_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv4_3_norm_mbox_conf"
  type: "Convolution"
  bottom: "conv4_3"
  top: "conv4_3_norm_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 6
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv4_3_norm_mbox_conf_perm"
  type: "Permute"
  bottom: "conv4_3_norm_mbox_conf"
  top: "conv4_3_norm_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv4_3_norm_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv4_3_norm_mbox_conf_perm"
  top: "conv4_3_norm_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv4_3_norm_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv4_3"
  bottom: "data"
  top: "conv4_3_norm_mbox_priorbox"
  prior_box_param {
    min_size: 16.0
    aspect_ratio: 2.0
    flip: true
    clip: false
    variance: 0.10000000149
    variance: 0.10000000149
    variance: 0.20000000298
    variance: 0.20000000298
    step: 8.0
    offset: 0.5
  }
}
layer {
  name: "conv5_3_norm_mbox_loc"
  type: "Convolution"
  bottom: "conv5_3"
  top: "conv5_3_norm_mbox_loc"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 12
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv5_3_norm_mbox_loc_perm"
  type: "Permute"
  bottom: "conv5_3_norm_mbox_loc"
  top: "conv5_3_norm_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv5_3_norm_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv5_3_norm_mbox_loc_perm"
  top: "conv5_3_norm_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv5_3_norm_mbox_conf"
  type: "Convolution"
  bottom: "conv5_3"
  top: "conv5_3_norm_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 6
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv5_3_norm_mbox_conf_perm"
  type: "Permute"
  bottom: "conv5_3_norm_mbox_conf"
  top: "conv5_3_norm_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv5_3_norm_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv5_3_norm_mbox_conf_perm"
  top: "conv5_3_norm_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv5_3_norm_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv5_3"
  bottom: "data"
  top: "conv5_3_norm_mbox_priorbox"
  prior_box_param {
    min_size: 32.0
    aspect_ratio: 2.0
    flip: true
    clip: false
    variance: 0.10000000149
    variance: 0.10000000149
    variance: 0.20000000298
    variance: 0.20000000298
    step: 16.0
    offset: 0.5
  }
}
layer {
  name: "fc7_mbox_loc"
  type: "Convolution"
  bottom: "fc7"
  top: "fc7_mbox_loc"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 12
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "fc7_mbox_loc_perm"
  type: "Permute"
  bottom: "fc7_mbox_loc"
  top: "fc7_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "fc7_mbox_loc_flat"
  type: "Flatten"
  bottom: "fc7_mbox_loc_perm"
  top: "fc7_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "fc7_mbox_conf"
  type: "Convolution"
  bottom: "fc7"
  top: "fc7_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 6
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "fc7_mbox_conf_perm"
  type: "Permute"
  bottom: "fc7_mbox_conf"
  top: "fc7_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "fc7_mbox_conf_flat"
  type: "Flatten"
  bottom: "fc7_mbox_conf_perm"
  top: "fc7_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "fc7_mbox_priorbox"
  type: "PriorBox"
  bottom: "fc7"
  bottom: "data"
  top: "fc7_mbox_priorbox"
  prior_box_param {
    min_size: 64.0
    aspect_ratio: 2.0
    flip: true
    clip: false
    variance: 0.10000000149
    variance: 0.10000000149
    variance: 0.20000000298
    variance: 0.20000000298
    step: 32.0
    offset: 0.5
  }
}
layer {
  name: "conv6_2_mbox_loc"
  type: "Convolution"
  bottom: "conv6_2"
  top: "conv6_2_mbox_loc"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 12
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv6_2_mbox_loc_perm"
  type: "Permute"
  bottom: "conv6_2_mbox_loc"
  top: "conv6_2_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv6_2_mbox_loc_flat"
  type: "Flatten"
  bottom: "conv6_2_mbox_loc_perm"
  top: "conv6_2_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv6_2_mbox_conf"
  type: "Convolution"
  bottom: "conv6_2"
  top: "conv6_2_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 6
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "conv6_2_mbox_conf_perm"
  type: "Permute"
  bottom: "conv6_2_mbox_conf"
  top: "conv6_2_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "conv6_2_mbox_conf_flat"
  type: "Flatten"
  bottom: "conv6_2_mbox_conf_perm"
  top: "conv6_2_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "conv6_2_mbox_priorbox"
  type: "PriorBox"
  bottom: "conv6_2"
  bottom: "data"
  top: "conv6_2_mbox_priorbox"
  prior_box_param {
    min_size: 128.0
    aspect_ratio: 2.0
    flip: true
    clip: false
    variance: 0.10000000149
    variance: 0.10000000149
    variance: 0.20000000298
    variance: 0.20000000298
    step: 64.0
    offset: 0.5
  }
}
layer {
  name: "arm_loc"
  type: "Concat"
  bottom: "conv4_3_norm_mbox_loc_flat"
  bottom: "conv5_3_norm_mbox_loc_flat"
  bottom: "fc7_mbox_loc_flat"
  bottom: "conv6_2_mbox_loc_flat"
  top: "arm_loc"
  concat_param {
    axis: 1
  }
}
layer {
  name: "arm_conf"
  type: "Concat"
  bottom: "conv4_3_norm_mbox_conf_flat"
  bottom: "conv5_3_norm_mbox_conf_flat"
  bottom: "fc7_mbox_conf_flat"
  bottom: "conv6_2_mbox_conf_flat"
  top: "arm_conf"
  concat_param {
    axis: 1
  }
}
layer {
  name: "arm_priorbox"
  type: "Concat"
  bottom: "conv4_3_norm_mbox_priorbox"
  bottom: "conv5_3_norm_mbox_priorbox"
  bottom: "fc7_mbox_priorbox"
  bottom: "conv6_2_mbox_priorbox"
  top: "arm_priorbox"
  concat_param {
    axis: 2
  }
}
layer {
  name: "P3_mbox_loc_p"
  type: "Convolution"
  bottom: "conv4_3"
  top: "P3_mbox_loc"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 12
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "P3_mbox_loc_perm"
  type: "Permute"
  bottom: "P3_mbox_loc"
  top: "P3_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "P3_mbox_loc_flat"
  type: "Flatten"
  bottom: "P3_mbox_loc_perm"
  top: "P3_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "P3_mbox_conf_p"
  type: "Convolution"
  bottom: "conv4_3"
  top: "P3_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 12
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "P3_mbox_conf_perm"
  type: "Permute"
  bottom: "P3_mbox_conf"
  top: "P3_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "P3_mbox_conf_flat"
  type: "Flatten"
  bottom: "P3_mbox_conf_perm"
  top: "P3_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "P4_mbox_loc_p"
  type: "Convolution"
  bottom: "conv5_3"
  top: "P4_mbox_loc"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 12
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "P4_mbox_loc_perm"
  type: "Permute"
  bottom: "P4_mbox_loc"
  top: "P4_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "P4_mbox_loc_flat"
  type: "Flatten"
  bottom: "P4_mbox_loc_perm"
  top: "P4_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "P4_mbox_conf_p"
  type: "Convolution"
  bottom: "conv5_3"
  top: "P4_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 12
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "P4_mbox_conf_perm"
  type: "Permute"
  bottom: "P4_mbox_conf"
  top: "P4_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "P4_mbox_conf_flat"
  type: "Flatten"
  bottom: "P4_mbox_conf_perm"
  top: "P4_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "P5_mbox_loc_p"
  type: "Convolution"
  bottom: "fc7"
  top: "P5_mbox_loc"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 12
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "P5_mbox_loc_perm"
  type: "Permute"
  bottom: "P5_mbox_loc"
  top: "P5_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "P5_mbox_loc_flat"
  type: "Flatten"
  bottom: "P5_mbox_loc_perm"
  top: "P5_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "P5_mbox_conf_p"
  type: "Convolution"
  bottom: "fc7"
  top: "P5_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 12
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "P5_mbox_conf_perm"
  type: "Permute"
  bottom: "P5_mbox_conf"
  top: "P5_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "P5_mbox_conf_flat"
  type: "Flatten"
  bottom: "P5_mbox_conf_perm"
  top: "P5_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "P6_mbox_loc_p"
  type: "Convolution"
  bottom: "conv6_2"
  top: "P6_mbox_loc"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 12
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "P6_mbox_loc_perm"
  type: "Permute"
  bottom: "P6_mbox_loc"
  top: "P6_mbox_loc_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "P6_mbox_loc_flat"
  type: "Flatten"
  bottom: "P6_mbox_loc_perm"
  top: "P6_mbox_loc_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "P6_mbox_conf_p"
  type: "Convolution"
  bottom: "conv6_2"
  top: "P6_mbox_conf"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 12
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "P6_mbox_conf_perm"
  type: "Permute"
  bottom: "P6_mbox_conf"
  top: "P6_mbox_conf_perm"
  permute_param {
    order: 0
    order: 2
    order: 3
    order: 1
  }
}
layer {
  name: "P6_mbox_conf_flat"
  type: "Flatten"
  bottom: "P6_mbox_conf_perm"
  top: "P6_mbox_conf_flat"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "odm_loc"
  type: "Concat"
  bottom: "P3_mbox_loc_flat"
  bottom: "P4_mbox_loc_flat"
  bottom: "P5_mbox_loc_flat"
  bottom: "P6_mbox_loc_flat"
  top: "odm_loc"
  concat_param {
    axis: 1
  }
}
layer {
  name: "odm_conf"
  type: "Concat"
  bottom: "P3_mbox_conf_flat"
  bottom: "P4_mbox_conf_flat"
  bottom: "P5_mbox_conf_flat"
  bottom: "P6_mbox_conf_flat"
  top: "odm_conf"
  concat_param {
    axis: 1
  }
}
layer {
  name: "arm_loss"
  type: "MultiBoxLoss"
  bottom: "arm_loc"
  bottom: "arm_conf"
  bottom: "arm_priorbox"
  bottom: "label"
  top: "arm_loss"
  include {
    phase: TRAIN
  }
  propagate_down: true
  propagate_down: true
  propagate_down: false
  propagate_down: false
  loss_param {
    normalization: VALID
  }
  multibox_loss_param {
    loc_loss_type: SMOOTH_L1
    conf_loss_type: SOFTMAX
    loc_weight: 1.0
    num_classes: 2
    share_location: true
    match_type: PER_PREDICTION
    overlap_threshold: 0.5
    use_prior_for_matching: true
    background_label_id: 0
    use_difficult_gt: true
    neg_pos_ratio: 3.0
    neg_overlap: 0.5
    code_type: CENTER_SIZE
    ignore_cross_boundary_bbox: false
    mining_type: MAX_NEGATIVE
    objectness_score: 0.00999999977648
  }
}
layer {
  name: "arm_conf_reshape"
  type: "Reshape"
  bottom: "arm_conf"
  top: "arm_conf_reshape"
  reshape_param {
    shape {
      dim: 0
      dim: -1
      dim: 2
    }
  }
}
layer {
  name: "arm_conf_softmax"
  type: "Softmax"
  bottom: "arm_conf_reshape"
  top: "arm_conf_softmax"
  softmax_param {
    axis: 2
  }
}
layer {
  name: "arm_conf_flatten"
  type: "Flatten"
  bottom: "arm_conf_softmax"
  top: "arm_conf_flatten"
  flatten_param {
    axis: 1
  }
}
layer {
  name: "odm_loss"
  type: "MultiBoxLoss"
  bottom: "odm_loc"
  bottom: "odm_conf"
  bottom: "arm_priorbox"
  bottom: "label"
  bottom: "arm_conf_flatten"
  bottom: "arm_loc"
  top: "odm_loss"
  include {
    phase: TRAIN
  }
  propagate_down: true
  propagate_down: true
  propagate_down: false
  propagate_down: false
  propagate_down: false
  propagate_down: false
  loss_param {
    normalization: VALID
  }
  multibox_loss_param {
    loc_loss_type: SMOOTH_L1
    conf_loss_type: SOFTMAX
    loc_weight: 1.0
    num_classes: 4
    share_location: true
    match_type: PER_PREDICTION
    overlap_threshold: 0.5
    use_prior_for_matching: true
    background_label_id: 0
    use_difficult_gt: true
    neg_pos_ratio: 3.0
    neg_overlap: 0.5
    code_type: CENTER_SIZE
    ignore_cross_boundary_bbox: false
    mining_type: MAX_NEGATIVE
    objectness_score: 0.00999999977648
  }
}

layer {
  name: "conv1_1_t"
  type: "Convolution"
  bottom: "data"
  top: "conv1_1_t"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu1_1_t"
  type: "ReLU"
  bottom: "conv1_1_t"
  top: "conv1_1_t"
}
layer {
  name: "conv1_2_t"
  type: "Convolution"
  bottom: "conv1_1_t"
  top: "conv1_2_t"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu1_2_t"
  type: "ReLU"
  bottom: "conv1_2_t"
  top: "conv1_2_t"
}
layer {
  name: "pool1_t"
  type: "Pooling"
  bottom: "conv1_2_t"
  top: "pool1_t"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv2_1_t"
  type: "Convolution"
  bottom: "pool1_t"
  top: "conv2_1_t"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu2_1_t"
  type: "ReLU"
  bottom: "conv2_1_t"
  top: "conv2_1_t"
}
layer {
  name: "conv2_2_t"
  type: "Convolution"
  bottom: "conv2_1_t"
  top: "conv2_2_t"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu2_2_t"
  type: "ReLU"
  bottom: "conv2_2_t"
  top: "conv2_2_t"
}
layer {
  name: "pool2_t"
  type: "Pooling"
  bottom: "conv2_2_t"
  top: "pool2_t"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv3_1_t"
  type: "Convolution"
  bottom: "pool2_t"
  top: "conv3_1_t"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu3_1_t"
  type: "ReLU"
  bottom: "conv3_1_t"
  top: "conv3_1_t"
}
layer {
  name: "conv3_2_t"
  type: "Convolution"
  bottom: "conv3_1_t"
  top: "conv3_2_t"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu3_2_t"
  type: "ReLU"
  bottom: "conv3_2_t"
  top: "conv3_2_t"
}
layer {
  name: "conv3_3_t"
  type: "Convolution"
  bottom: "conv3_2_t"
  top: "conv3_3_t"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu3_3_t"
  type: "ReLU"
  bottom: "conv3_3_t"
  top: "conv3_3_t"
}
layer {
  name: "pool3_t"
  type: "Pooling"
  bottom: "conv3_3_t"
  top: "pool3_t"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv4_1_t"
  type: "Convolution"
  bottom: "pool3_t"
  top: "conv4_1_t"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu4_1_t"
  type: "ReLU"
  bottom: "conv4_1_t"
  top: "conv4_1_t"
}
layer {
  name: "conv4_2_t"
  type: "Convolution"
  bottom: "conv4_1_t"
  top: "conv4_2_t"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu4_2_t"
  type: "ReLU"
  bottom: "conv4_2_t"
  top: "conv4_2_t"
}
layer {
  name: "conv4_3_t"
  type: "Convolution"
  bottom: "conv4_2_t"
  top: "conv4_3_t"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu4_3_t"
  type: "ReLU"
  bottom: "conv4_3_t"
  top: "conv4_3_t"
}
layer {
  name: "pool4_t"
  type: "Pooling"
  bottom: "conv4_3_t"
  top: "pool4_t"
  pooling_param {
    pool: MAX
    kernel_size: 2
    stride: 2
  }
}
layer {
  name: "conv5_1_t"
  type: "Convolution"
  bottom: "pool4_t"
  top: "conv5_1_t"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
    dilation: 1
  }
}
layer {
  name: "relu5_1_t"
  type: "ReLU"
  bottom: "conv5_1_t"
  top: "conv5_1_t"
}
layer {
  name: "conv5_2_t"
  type: "Convolution"
  bottom: "conv5_1_t"
  top: "conv5_2_t"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
    dilation: 1
  }
}
layer {
  name: "relu5_2_t"
  type: "ReLU"
  bottom: "conv5_2_t"
  top: "conv5_2_t"
}
layer {
  name: "conv5_3_t"
  type: "Convolution"
  bottom: "conv5_2_t"
  top: "conv5_3_t"
  param {
    lr_mult: 0
    decay_mult: 0
  }
  param {
    lr_mult: 0
    decay_mult: 0
  }
  convolution_param {
    num_output: 512
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
    dilation: 1
  }
}
layer {
  name: "relu5_3_t"
  type: "ReLU"
  bottom: "conv5_3_t"
  top: "conv5_3_t"
}

layer {
  name: "conv5_3_m"
  type: "Convolution"
  bottom: "conv5_3"
  top: "conv5_3_m"
  propagate_down: true
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 512
    kernel_size: 1
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }  
}

layer {
  name: "relu5_3_m"
  type: "ReLU"
  bottom: "conv5_3_m"
  top: "conv5_3_m"
}

layer {
  name: "roi_pool_t"
  type: "ROIPooling"
  bottom: "conv5_3_t"
  bottom: "label"
  top: "pool_t"
  roi_pooling_param {
    pooled_w: 7
    pooled_h: 7
  }
  propagate_down: false
  propagate_down: false
}
layer {
  name: "roi_pool_s"
  type: "ROIPooling"
  bottom: "conv5_3_m"
  bottom: "label"
  top: "pool_s"
  roi_pooling_param {
    pooled_w: 7
    pooled_h: 7
  }
  propagate_down: true
  propagate_down: false
}

layer {
  name: "mimic_loss"
  type: "EuclideanLoss"
  bottom: "pool_t"
  bottom: "pool_s"
  top: "mimic_loss"
  propagate_down: false
  propagate_down: true
  loss_weight: 10
  include {
    phase: TRAIN
  }
}

 

以上是关于网络结构的主要内容,如果未能解决你的问题,请参考以下文章

VSCode自定义代码片段5——HTML元素结构

VSCode自定义代码片段14——Vue的axios网络请求封装

VSCode自定义代码片段14——Vue的axios网络请求封装

VSCode自定义代码片段14——Vue的axios网络请求封装

分享几个实用的代码片段(第二弹)

分享几个实用的代码片段(第二弹)