车牌识别加密狗的作用

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了车牌识别加密狗的作用相关的知识,希望对你有一定的参考价值。

参考技术A 1、纯C编写,跨平台应用灵活。

2、整车车牌识别率高:白天识别率≥99.7,夜间识别率≥98%。

3、车牌宽度要求低:60-400像素宽度均可识别。

4、识别速度快:极致优化的车牌定位和识别算法,识别时间≤50毫秒(200万图片)。

5、专注于车牌识别软件的加密SDK研发,保证软件的运行安全、准确。

6、支持车牌种类齐全:蓝牌、黄牌、挂车号牌、新军牌、教练车牌、大使馆车牌、农用车牌、个性化车牌、港澳出入境车牌、澳台车牌、民航车牌、领馆车牌、新能源车牌等。

车牌识别基于matlab投影模板匹配车牌识别含Matlab源码 1359期

一、车牌识别简介

车牌识别技术起源于20世纪80年代初期,图像模式识别和计算机视觉在其中起到至关重要的作用。随着计算机技术的迅速普及和进步,80年代中后期,车牌识别系统逐步投入市场并使用,但识别精度和速度都不理想。目前,发达国家的车牌识别系统已广泛用于市场,其中以色列和新加坡公司的车牌识别系统较为领先。由于车牌设计的不同,不存在一种通用的车牌检测技术。因中国车牌包括汉字,使得国外车牌识别系统不能直接用于国内车牌识别,需要中国自主研发。中国的车牌识别技术研究起步略晚于西方国家。目前国内技术领先的是中科院的“汉王眼”和香港的视觉科技公司。但是,这些投入市场的车牌识别系统的使用都有一定的局限性,在车牌图像质量差、车牌倾斜、光照条件不理想等情况时,识别率会大幅度降低。
为了克服上述问题,本文对不同光照条件下获得的车牌图像进行了识别和分析。由于车牌涉及保密信息,暂时没有公开的大规模数据集可供使用和实验对比。本文先对车牌数据进行采集,统一处理320×240分辨率的图片,建立测试用数据库。数据库分为两类:测试库1为光照条件较好,无阴影车牌;测试库2为光照条件较差,有阴影车牌。采用传统的模板匹配算法建立车牌识别系统,模板图片采用中值滤波算法进行平均处理,统一建立分辨率为20×40的识别模板库。为方便用户使用, 利用Matlab建立了图形用户交互界面(GUI) 。通过对测试库车牌实验, 可以看到车牌成像质量对识别率
有很大影响。因此在建立车牌识别系统时,适当角度的补光可有效提高识别的准确率。
1 图像的预处理
由于车牌多是通过交通监控等条件获得,因周边交通环境、拍摄角度、光照和实时性要求等多种原因,得到的照片直接用于车牌的识别准确率难以得到保证。因此,预处理图像可

以上是关于车牌识别加密狗的作用的主要内容,如果未能解决你的问题,请参考以下文章

车牌识别技术在物联网中起到的作用

巡逻机器人用应用的pc端车牌识别

TH-OCR算法-PC端车牌识别

车牌识别基于matlab投影模板匹配车牌识别含Matlab源码 1359期

车牌识别基于matlab投影模板匹配车牌识别含Matlab源码 1359期

车牌识别基于matlab GUI模板匹配车牌识别含Matlab源码 1215期