OpenCV大型阵列类型Mat类

Posted shuqing-cxw

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OpenCV大型阵列类型Mat类相关的知识,希望对你有一定的参考价值。

一、Mat类

Mat类是C++实现的OpenCV库的核心,表示一个N维度单通或多通道阵列,可以用来存储实数或复数值向量和数组,灰度或彩色图像,向量场,张量及直方图(当然高纬度的直方图存储在稀疏Mat类更合适),OpenCV是一个图像处理库。它包含大量的图像处理功能。为了解决计算上的挑战,大多数时候你最终会使用库的多个功能。因此,将图像传递给函数是一种常见的做法。我们不应该忘记,我们正在讨论图像处理算法,这些算法往往计算量很大。我们想要做的最后一件事是通过制作不必要的大型图像副本来进一步降低程序的速度。

为了解决这个问题,OpenCV使用了一个引用计数系统。这个想法是,每个Mat对象都有自己的头部,但是矩阵可以通过让它们的矩阵指针指向相同的地址而在它们的两个实例之间共享。而且,复制操作符只会复制标题和指向大矩阵的指针,而不是数据本身。

1.1创建一个Mat对象

从上可以看出Mat基本上是一个包含两个数据部分的类:矩阵头(包含矩阵大小,用于存储的方法,存储矩阵的地址等信息)以及包含像素值(取决于选择用于存储的方法的任何维度)。矩阵头部大小是恒定的,但是矩阵本身的大小可能随着图像而变化,并且通常比数量级大。

创建一个Mat类型对象可以没有大小和数据类型,然后通过成员函数create()来分配指定,例如创建一个二维数组,可以使用create(int rows, int cols, types)备注:仅限于二维数组,第三个参数类型既指定了元素的类型又说明了通道数,这些类型都定义在矩阵头中,格式为:CV_{8U,16S,16U,32S,32F,64F}C{1,2,3},然后通过setTo()函数设定每个通道上的具体数值;

通常定义创建一个Mat类型的对象可以通过构造函数在创建矩阵时即分配内存,其中一个构造函数的参数与create()函数参数相同;

 1 //演示示例:创建一个Mat对象数组
 2 #include <opencv2/highgui.hpp>
 3 #include <opencv2/core.hpp>
 4 #include <iostream>
 5 
 6 using namespace std;
 7 using namespace cv;
 8 
 9 int main()
10 {
11     Mat array_test;
12     array_test.create( 3, 2, CV_32FC3 );       //create array header
13     array_test.setTo(Scalar(1.0f,2.0f,3.0f));   //set array data
14 
15     cout << "array_test = " << endl << array_test << endl;
16     //如下使用构造函数等同上面分布创建
17     Mat array_test_con( 3, 2, CV_32FC3, Scalar(1.0f,2.0f,3.0f) );
18     cout << "array_test_con = " << endl << array_test_con << endl;
19     return 0;
20 }

1.2 Mat类对象的数据和Mat类矩阵头

如上叙述,为了解决图像处理繁杂计算问题,OpenCV使用了一个引用计数系统。这个想法是,针对图像的数据,每个Mat对象都有自己的头部相对应,通过让它们的矩阵指针指向相同的地址而在它们的两个实例对象之间共享。而且,复制操作符只会复制标题和指向大矩阵的指针,而不是数据本身。

 1 //演示示例:矩阵头Array Header和矩阵数据Array data关系
 2 #include <opencv2/highgui.hpp>
 3 #include <opencv2/core.hpp>
 4 #include <iostream>
 5 using namespace std;
 6 using namespace cv;
 7  
 8 int main()
 9 {
10     Mat A( 2, 2, CV_8UC3, Scalar(10, 20, 30));
11  
12     cout << "A = " << endl << A << endl;
13  
14     cout << endl;
15  
16     Mat B(A);
17     cout << "B = " << endl << B << endl;
18  
19     cout << endl;
20  
21     Mat C = A;
22     cout << "C = " << endl << C << endl;
23  
24     cout << endl << "After Mat algebra..." << endl;
25  
26     Mat A1( 2, 2, CV_8UC3, Scalar(1, 2, 3));
27  
28     A = A +A1;
29  
30     cout << "A = " << endl << A << endl;
31     cout << "B = " << endl << B << endl;
32     cout << "C = " << endl << C << endl;
33  
34     return 0;
35 }

上述所有对象最后指向相同的单一数据矩阵。然而,它们的标头是不同的,并且使用它们中的任何一个进行修改也会影响所有其他标签。实际上,不同的对象只是为相同的底层数据提供不同的访问方法。不过,它们的矩阵头部分是真正相互独立的。这样,可以创建一个仅包含矩阵数据的一部分的矩阵对象。例如,要在图像中创建感兴趣的区域(ROI),您只需创建一个带有新边界的新矩阵头:

 1 #include <opencv2/highgui.hpp>
 2 #include <opencv2/core.hpp>
 3 #include <iostream>
 4 
 5 using namespace std;
 6 using namespace cv;
 7 
 8 int main()
 9 {
10     Mat A( 4, 4, CV_8UC3, Scalar(10, 20, 30));
11     cout << "A = " << endl << A << endl;
12 
13     cout << endl;
14 
15     Mat B(A);
16     cout << "B = " << endl << B << endl;
17 
18     cout << endl;
19 
20     Mat C = A;
21 
22     cout << "C = " << endl << C << endl;
23 
24     cout << endl << "After Mat algebra..." << endl;
25 
26     Mat A1( 4, 4, CV_8UC3, Scalar(1, 2, 3));
27 
28     A = A +A1;
29 
30     cout << "A = " << endl << A << endl;
31     cout << "B = " << endl << B << endl;
32     cout << "C = " << endl << C << endl;
33     //在图像中创建感兴趣的区域(ROI)
34     Mat D(A, Rect(0,0,2,2));
35     cout << "D = " << endl << D << endl;
36 
37     D.setTo(Scalar(1, 2, 3));
38     cout << "A = " << endl << A << endl;
39 
40     //创建一个带有新边界的新矩阵头
41     Mat E = A(Range::all(), Range(2,3));
42     cout << "E = " << endl << E << endl;
43 
44     E.setTo(Scalar(7, 8, 9));
45     cout << "A = " << endl << A << endl;
46 
47     return 0;
48 }

当想复制矩阵本身,所以OpenCV提供了cv :: Mat :: clone()和cv :: Mat :: copyTo()函数。

 1 #include <opencv2/highgui.hpp>
 2 #include <opencv2/core.hpp>
 3 #include <iostream>
 4 
 5 using namespace std;
 6 using namespace cv;
 7 
 8 int main()
 9 {
10     Mat A( 4, 4, CV_8UC3, Scalar(10, 20, 30));
11     cout << "A = " << endl << A << endl;
12 
13     cout << endl;
14 
15     Mat B(A);
16     cout << "B = " << endl << B << endl;
17 
18     cout << endl;
19  
20     Mat C = A;
21     cout << "C = " << endl << C << endl;
22 
23     cout << endl << "After Mat algebra..." << endl;
24 
25     Mat A1( 4, 4, CV_8UC3, Scalar(1, 2, 3));
26 
27     A = A +A1;
28 
29     cout << "A = " << endl << A << endl;
30     cout << "B = " << endl << B << endl;
31     cout << "C = " << endl << C << endl;
32  
33     Mat D(A, Rect(0,0,2,2));      //拷贝构造函数中Rect仅适用于二维矩阵
34     cout << "D = " << endl << D << endl;
35 
36     D.setTo(Scalar(1, 2, 3));
37     cout << "A = " << endl << A << endl;
38 
39     Mat E = A(Range::all(), Range(2,3)); //拷贝构造函数中Range 仅适用于二维矩阵
40     cout << "E = " << endl << E << endl;
41     E.setTo(Scalar(7, 8, 9));
42     cout << "A = " << endl << A << endl;
43 
44     Mat F = A.clone();
45     cout << "F = " << endl << F << endl;
46 
47     Mat G;
48     A.copyTo(G);
49     cout << "G = " << endl << G << endl;
50 
51     A.setTo(Scalar(10, 20, 30));
52     cout << "A = " << endl << A << endl;
53     cout << "F = " << endl << F << endl;
54     cout << "G = " << endl << G << endl;
55     return 0;
56 }

二、SpareMat类

针对稀疏矩阵,OpenCV定义了独立的数据结构SpareMat类。稀疏矩阵仅存储非零元素,避免了资源上的浪费,即将节省很多空间尤其针对元素存在许多零元素的数据, 使用稀疏矩阵的常用案例是直方图,对于直方图,大多数数据是零,存储这些零元素又是没有必要的。

三、数组常用操作

3.1两数组元素加权相加运算 AddWeighted()

1 void addWeighted(
2 InputArray src1,   //第一个输入矩阵
3 double alpha,      //第一个输入矩阵的权重
4 InputArray src2,   //第二个输入的矩阵
5 double beta,       //第二个输入矩阵的权重
6 double gamma,      //权重相加的偏移量
7 OutputArray dst,   //输出的结果
8 int dtype = -1)    //输出结果的类型

即加权的表达式如下:

Dst = α·src1 + β·src2 + γ

该函数可以用来实现alhpa融合(线性融合),即将公式中的γ设置为0,则alpha融合的公式演变为:

Dst = α·src1 + β·src2 = α·src1 + (1-α)·src2

函数中需要两个源图像src1和src2,这两个源图像可以是任意类型的像素(灰度,彩色),但只要他们属于同一类型一致即可,所输出的图像也是与源图像的像素类型一致;

注意:源图像可以是不同尺寸,但融合的操作区域(即感兴趣区域ROI)必须尺寸统一,否则OpenCV会产生错误;

 1 //alpha融合演示示例
 2 #include <opencv2/highgui.hpp>
 3 #include <iostream>
 4 
 5 using namespace std;
 6 using namespace cv;
 7 
 8 int main()
 9 {
10      //读取图像imread()显示图像imshow()函数待后续
11      Mat src1 = imread("D:\\workspace-qt\\OpenCV\\LinuxLogo.jpg");
12      if(src1.empty()) {cout << "Can‘t Load the image..." << endl; return -1;}
13      Mat src2 = imread("D:\\workspace-qt\\OpenCV\\WindowsLogo.jpg");
14      if(src2.empty()) {cout << "Can‘t Load the image..." << endl; return -1;}
15      Mat dst;
16      addWeighted(src1,0.5,src2,0.5,0.0,dst,-1);
17      imshow("Alpha",dst);
18      waitKey(0);
19      return 0;
20

备注:在加权融合图像的便宜参数γ方面,函数提供了更大的灵活性,一般而言,使α和β不小于0且相加不大于1,那么γ的设定取决于加权后图像像素所要调整到的平均值或最大值。

技术分享图片   技术分享图片  

3.2 色彩空间转换 cvColor()

1 void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 )

输入图像数组可以是8位数组,16位无符号类型数组,或者32位浮点类型,而输出图像数组与输入数组保持着相同的尺寸大小和深度,转换操作由参数code来实现,dstCn表示输出图像的通道数,默认设为0意味着输出数组自动由源图像src和转换规则code作用后自动获取;

技术分享图片
  1 enum ColorConversionCodes {
  2     COLOR_BGR2BGRA     = 0, //!< add alpha channel to RGB or BGR image
  3     COLOR_RGB2RGBA     = COLOR_BGR2BGRA,
  4 
  5     COLOR_BGRA2BGR     = 1, //!< remove alpha channel from RGB or BGR image
  6     COLOR_RGBA2RGB     = COLOR_BGRA2BGR,
  7 
  8     COLOR_BGR2RGBA     = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel)
  9     COLOR_RGB2BGRA     = COLOR_BGR2RGBA,
 10 
 11     COLOR_RGBA2BGR     = 3,
 12     COLOR_BGRA2RGB     = COLOR_RGBA2BGR,
 13 
 14     COLOR_BGR2RGB      = 4,
 15     COLOR_RGB2BGR      = COLOR_BGR2RGB,
 16 
 17     COLOR_BGRA2RGBA    = 5,
 18     COLOR_RGBA2BGRA    = COLOR_BGRA2RGBA,
 19 
 20     COLOR_BGR2GRAY     = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions"
 21     COLOR_RGB2GRAY     = 7,
 22     COLOR_GRAY2BGR     = 8,
 23     COLOR_GRAY2RGB     = COLOR_GRAY2BGR,
 24     COLOR_GRAY2BGRA    = 9,
 25     COLOR_GRAY2RGBA    = COLOR_GRAY2BGRA,
 26     COLOR_BGRA2GRAY    = 10,
 27     COLOR_RGBA2GRAY    = 11,
 28 
 29     COLOR_BGR2BGR565   = 12, //!< convert between RGB/BGR and BGR565 (16-bit images)
 30     COLOR_RGB2BGR565   = 13,
 31     COLOR_BGR5652BGR   = 14,
 32     COLOR_BGR5652RGB   = 15,
 33     COLOR_BGRA2BGR565  = 16,
 34     COLOR_RGBA2BGR565  = 17,
 35     COLOR_BGR5652BGRA  = 18,
 36     COLOR_BGR5652RGBA  = 19,
 37 
 38     COLOR_GRAY2BGR565  = 20, //!< convert between grayscale to BGR565 (16-bit images)
 39     COLOR_BGR5652GRAY  = 21,
 40 
 41     COLOR_BGR2BGR555   = 22,  //!< convert between RGB/BGR and BGR555 (16-bit images)
 42     COLOR_RGB2BGR555   = 23,
 43     COLOR_BGR5552BGR   = 24,
 44     COLOR_BGR5552RGB   = 25,
 45     COLOR_BGRA2BGR555  = 26,
 46     COLOR_RGBA2BGR555  = 27,
 47     COLOR_BGR5552BGRA  = 28,
 48     COLOR_BGR5552RGBA  = 29,
 49 
 50     COLOR_GRAY2BGR555  = 30, //!< convert between grayscale and BGR555 (16-bit images)
 51     COLOR_BGR5552GRAY  = 31,
 52 
 53     COLOR_BGR2XYZ      = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions"
 54     COLOR_RGB2XYZ      = 33,
 55     COLOR_XYZ2BGR      = 34,
 56     COLOR_XYZ2RGB      = 35,
 57 
 58     COLOR_BGR2YCrCb    = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions"
 59     COLOR_RGB2YCrCb    = 37,
 60     COLOR_YCrCb2BGR    = 38,
 61     COLOR_YCrCb2RGB    = 39,
 62 
 63     COLOR_BGR2HSV      = 40, //!< convert RGB/BGR to HSV (hue saturation value), @ref color_convert_rgb_hsv "color conversions"
 64     COLOR_RGB2HSV      = 41,
 65 
 66     COLOR_BGR2Lab      = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions"
 67     COLOR_RGB2Lab      = 45,
 68 
 69     COLOR_BGR2Luv      = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions"
 70     COLOR_RGB2Luv      = 51,
 71     COLOR_BGR2HLS      = 52, //!< convert RGB/BGR to HLS (hue lightness saturation), @ref color_convert_rgb_hls "color conversions"
 72     COLOR_RGB2HLS      = 53,
 73 
 74     COLOR_HSV2BGR      = 54, //!< backward conversions to RGB/BGR
 75     COLOR_HSV2RGB      = 55,
 76 
 77     COLOR_Lab2BGR      = 56,
 78     COLOR_Lab2RGB      = 57,
 79     COLOR_Luv2BGR      = 58,
 80     COLOR_Luv2RGB      = 59,
 81     COLOR_HLS2BGR      = 60,
 82     COLOR_HLS2RGB      = 61,
 83 
 84     COLOR_BGR2HSV_FULL = 66, //!<
 85     COLOR_RGB2HSV_FULL = 67,
 86     COLOR_BGR2HLS_FULL = 68,
 87     COLOR_RGB2HLS_FULL = 69,
 88 
 89     COLOR_HSV2BGR_FULL = 70,
 90     COLOR_HSV2RGB_FULL = 71,
 91     COLOR_HLS2BGR_FULL = 72,
 92     COLOR_HLS2RGB_FULL = 73,
 93 
 94     COLOR_LBGR2Lab     = 74,
 95     COLOR_LRGB2Lab     = 75,
 96     COLOR_LBGR2Luv     = 76,
 97     COLOR_LRGB2Luv     = 77,
 98 
 99     COLOR_Lab2LBGR     = 78,
100     COLOR_Lab2LRGB     = 79,
101     COLOR_Luv2LBGR     = 80,
102     COLOR_Luv2LRGB     = 81,
103 
104     COLOR_BGR2YUV      = 82, //!< convert between RGB/BGR and YUV
105     COLOR_RGB2YUV      = 83,
106     COLOR_YUV2BGR      = 84,
107     COLOR_YUV2RGB      = 85,
108 
109     //! YUV 4:2:0 family to RGB
110     COLOR_YUV2RGB_NV12  = 90,
111     COLOR_YUV2BGR_NV12  = 91,
112     COLOR_YUV2RGB_NV21  = 92,
113     COLOR_YUV2BGR_NV21  = 93,
114     COLOR_YUV420sp2RGB  = COLOR_YUV2RGB_NV21,
115     COLOR_YUV420sp2BGR  = COLOR_YUV2BGR_NV21,
116 
117     COLOR_YUV2RGBA_NV12 = 94,
118     COLOR_YUV2BGRA_NV12 = 95,
119     COLOR_YUV2RGBA_NV21 = 96,
120     COLOR_YUV2BGRA_NV21 = 97,
121     COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
122     COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,
123 
124     COLOR_YUV2RGB_YV12  = 98,
125     COLOR_YUV2BGR_YV12  = 99,
126     COLOR_YUV2RGB_IYUV  = 100,
127     COLOR_YUV2BGR_IYUV  = 101,
128     COLOR_YUV2RGB_I420  = COLOR_YUV2RGB_IYUV,
129     COLOR_YUV2BGR_I420  = COLOR_YUV2BGR_IYUV,
130     COLOR_YUV420p2RGB   = COLOR_YUV2RGB_YV12,
131     COLOR_YUV420p2BGR   = COLOR_YUV2BGR_YV12,
132 
133     COLOR_YUV2RGBA_YV12 = 102,
134     COLOR_YUV2BGRA_YV12 = 103,
135     COLOR_YUV2RGBA_IYUV = 104,
136     COLOR_YUV2BGRA_IYUV = 105,
137     COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
138     COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
139     COLOR_YUV420p2RGBA  = COLOR_YUV2RGBA_YV12,
140     COLOR_YUV420p2BGRA  = COLOR_YUV2BGRA_YV12,
141 
142     COLOR_YUV2GRAY_420  = 106,
143     COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
144     COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
145     COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
146     COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
147     COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
148     COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
149     COLOR_YUV420p2GRAY  = COLOR_YUV2GRAY_420,
150 
151     //! YUV 4:2:2 family to RGB
152     COLOR_YUV2RGB_UYVY = 107,
153     COLOR_YUV2BGR_UYVY = 108,
154     //COLOR_YUV2RGB_VYUY = 109,
155     //COLOR_YUV2BGR_VYUY = 110,
156     COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
157     COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
158     COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
159     COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
160 
161     COLOR_YUV2RGBA_UYVY = 111,
162     COLOR_YUV2BGRA_UYVY = 112,
163     //COLOR_YUV2RGBA_VYUY = 113,
164     //COLOR_YUV2BGRA_VYUY = 114,
165     COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
166     COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
167     COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
168     COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,
169 
170     COLOR_YUV2RGB_YUY2 = 115,
171     COLOR_YUV2BGR_YUY2 = 116,
172     COLOR_YUV2RGB_YVYU = 117,
173     COLOR_YUV2BGR_YVYU = 118,
174     COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
175     COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
176     COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
177     COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
178 
179     COLOR_YUV2RGBA_YUY2 = 119,
180     COLOR_YUV2BGRA_YUY2 = 120,
181     COLOR_YUV2RGBA_YVYU = 121,
182     COLOR_YUV2BGRA_YVYU = 122,
183     COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
184     COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
185     COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
186     COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,
187 
188     COLOR_YUV2GRAY_UYVY = 123,
189     COLOR_YUV2GRAY_YUY2 = 124,
190     //CV_YUV2GRAY_VYUY    = CV_YUV2GRAY_UYVY,
191     COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
192     COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
193     COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
194     COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
195     COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,
196 
197     //! alpha premultiplication
198     COLOR_RGBA2mRGBA    = 125,
199     COLOR_mRGBA2RGBA    = 126,
200 
201     //! RGB to YUV 4:2:0 family
202     COLOR_RGB2YUV_I420  = 127,
203     COLOR_BGR2YUV_I420  = 128,
204     COLOR_RGB2YUV_IYUV  = COLOR_RGB2YUV_I420,
205     COLOR_BGR2YUV_IYUV  = COLOR_BGR2YUV_I420,
206 
207     COLOR_RGBA2YUV_I420 = 129,
208     COLOR_BGRA2YUV_I420 = 130,
209     COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
210     COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
211     COLOR_RGB2YUV_YV12  = 131,
212     COLOR_BGR2YUV_YV12  = 132,
213     COLOR_RGBA2YUV_YV12 = 133,
214     COLOR_BGRA2YUV_YV12 = 134,
215 
216     //! Demosaicing
217     COLOR_BayerBG2BGR = 46,
218     COLOR_BayerGB2BGR = 47,
219     COLOR_BayerRG2BGR = 48,
220     COLOR_BayerGR2BGR = 49,
221 
222     COLOR_BayerBG2RGB = COLOR_BayerRG2BGR,
223     COLOR_BayerGB2RGB = COLOR_BayerGR2BGR,
224     COLOR_BayerRG2RGB = COLOR_BayerBG2BGR,
225     COLOR_BayerGR2RGB = COLOR_BayerGB2BGR,
226 
227     COLOR_BayerBG2GRAY = 86,
228     COLOR_BayerGB2GRAY = 87,
229     COLOR_BayerRG2GRAY = 88,
230     COLOR_BayerGR2GRAY = 89,
231 
232     //! Demosaicing using Variable Number of Gradients
233     COLOR_BayerBG2BGR_VNG = 62,
234     COLOR_BayerGB2BGR_VNG = 63,
235     COLOR_BayerRG2BGR_VNG = 64,
236     COLOR_BayerGR2BGR_VNG = 65,
237 
238     COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG,
239     COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG,
240     COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG,
241     COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG,
242 
243     //! Edge-Aware Demosaicing
244     COLOR_BayerBG2BGR_EA  = 135,
245     COLOR_BayerGB2BGR_EA  = 136,
246     COLOR_BayerRG2BGR_EA  = 137,
247     COLOR_BayerGR2BGR_EA  = 138,
248 
249     COLOR_BayerBG2RGB_EA  = COLOR_BayerRG2BGR_EA,
250     COLOR_BayerGB2RGB_EA  = COLOR_BayerGR2BGR_EA,
251     COLOR_BayerRG2RGB_EA  = COLOR_BayerBG2BGR_EA,
252     COLOR_BayerGR2RGB_EA  = COLOR_BayerGB2BGR_EA,
253 
254     //! Demosaicing with alpha channel
255     COLOR_BayerBG2BGRA = 139,
256     COLOR_BayerGB2BGRA = 140,
257     COLOR_BayerRG2BGRA = 141,
258     COLOR_BayerGR2BGRA = 142,
259 
260     COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA,
261     COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA,
262     COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA,
263     COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA,
264 
265     COLOR_COLORCVT_MAX  = 143
266 };
转换参数Code选取列表

备注:色彩空间转换都用到如下约定:

1 8位图像的范围:0~255
2 16位图像的范围:0~65536
3 浮点数的范围:0.0~1.0
4 黑白图像转换位彩色图像时,最终图形与黑白图像的通道数相同
5 彩色图像转换为灰度图像时,灰度值计算使用加权公式:
6 Y= 0.299R+0.587G+0.114B

针对HSV色彩模式或者HLS色彩模式来说色调范围通常Rang(0,360);

当HSV色彩模式以8位图像形式输出时,色调应处以2,才能不出现问题; 

 1 //RGB转Gray演示示例
 2 #include <opencv2/highgui.hpp>
 3 #include <opencv2/imgproc.hpp>
 4 #include <iostream>
 5 
 6 using namespace std;
 7 using namespace cv;
 8 
 9 int main()
10 {
11     Mat src2 = imread("D:\\workspace-qt\\OpenCV\\WindowsLogo.jpg");
12     if(src2.empty()) {cout << "Can‘t Load the image..." << endl; return -1;}
13 
14     Mat dst_gray;
15     cvtColor(src2,dst_gray,CV_BGR2GRAY);
16     imshow("Alpha",dst_gray);
17     waitKey(0);
18     return 0;
19 }

3.3 图像翻转flip()

void flip(InputArray src, OutputArray dst, int flipCode)

将图像绕X轴或者Y周或绕X轴Y轴上同时旋转,取决于参数flipCode的设置

1 图像绕X轴旋转:flipCode = 02 图像绕Y轴旋转:flipCode = 13 图像绕X轴和Y轴同时旋转:flipCode = -1

常用于图像坐标原点在左上角和左下角的变换时使用,尤其是进行视频处理所进行的图像格式变化;

 1 #include <opencv2/highgui.hpp>
 2 #include <opencv2/imgproc.hpp>
 3 #include <iostream>
 4 
 5 using namespace std;
 6 using namespace cv;
 7 
 8 int main()
 9 {
10     Mat src = imread("D:\\workspace-qt\\OpenCV\\WindowsLogo.jpg");
11     if(src.empty()) {cout << "Can‘t Load the image..." << endl; return -1;}
12 
13     imshow("src",src);
14     Mat dst_x, dst_y, dst_x_y;
15     flip(src,dst_x,0);
16     flip(src,dst_y,1);
17     flip(src,dst_x_y,-1);
18     imshow("flipCode = 0",dst_x);
19     imshow("flipCode = 1",dst_y);
20     imshow("flipCode = -1",dst_x_y);
21     waitKey(0);
22     return 0;
23 }

技术分享图片

以上是关于OpenCV大型阵列类型Mat类的主要内容,如果未能解决你的问题,请参考以下文章

OPENCV学习笔记2-8_Mat_类

一句代码将OpenCV的Mat对象的数据打印输出的

opencv mat的数据类型CV_32FC1变成CV_8UC1

OpenCV_Mat类对象常用属性值的获取方法

OpenCV中的Mat类

vector类转换Mat类