1.7 Generate an array of window maximums
Posted latup
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了1.7 Generate an array of window maximums相关的知识,希望对你有一定的参考价值。
Title:
There is an integer array, arr, and a window of size w slides from the leftmost to the rightmost edge of the array. Each time the window is slid to the right one position.
For example, when the array is [4, 3, 5, 4, 3, 3, 6, 7], and the window size is 3:
[4 3 5] 4 3 3 6 7 The maximum value in the window is 5
4 [3 5 4] 3 3 6 7 The maximum value in the window is 5
4 3 [5 4 3] 3 6 7 The maximum value in the window is 5
4 3 5 [4 3 3] 6 7 The maximum value in the window is 4
4 3 5 4 [3 3 6] 7 The maximum value in the window is 6
4 3 5 4 3 [3 6 7] The maximum value in the window is 7
If the array length is n and the window size is w, a total of n-w+1 windows are generated.
Please implement a function:
Input: Integer array arr, window size w.
Output: an array res of length n-w+1, res [i] represents the maximum value of each window state.
In this case, the result should return {5, 5, 5, 4, 6, 7}
Solution:
My:
1 //Generate an array of window maximums 2 void getMaxWindow(int arr[], int n, int res[], int winsize) 3 { 4 int i, j, k, max; //Variable i controls sliding in a window; variable j controls sliding on array arr. 5 //The variable k is the index of the array res; the variable max records the maximum value in the current window. 6 j = 0; 7 k = 0; 8 while (k < n - winsize + 1) //When the array arr is not traversed, continue searching for the subsequent maximum window. 9 { 10 max = 0; 11 for (i = 0; i < winsize; i++, j++) //Find the maximum value in the current window. 12 { 13 if (max < arr[j]) 14 { 15 max = arr[j]; 16 } 17 } 18 res[k++] = max; //Record the maximum value of the current window. 19 j = j - winsize + 1; //Slide the window to the right one position. 20 } 21 }
time complexity:O(n * w)
Teacher Zuo:
1 //Generate an array of window maximums 2 int* getMaxWindow(const int arr[], int n, int w) 3 { 4 if (arr == NULL || w < 1 || n < w) 5 { 6 return NULL; 7 } 8 deque<int> qmax; //Deque, storing subscripts of qualifying array elements 9 int* res = new int [n - w + 1]; //new can dynamically allocate memory at run time, need to use delete [] res; release memory at the end of the program run 10 int index = 0; 11 for (int i = 0; i < n; i++) //i used to track arr array elements 12 { 13 while (!qmax.empty() && arr[qmax.back()] <= arr[i]) //When the deque is not empty, and the array element corresponding to the tail element is not greater than arr[i], the element at the end of the queue is popped up. 14 { 15 qmax.pop_back(); 16 } 17 qmax.push_back(i); //When the queue is empty or the array element corresponding to the tail element is greater than arr[i], the index i is enqueued. 18 if (qmax.front() == i - w) //If the element of the head (ie the array index) is not in the current window, the element is dequeued. 19 { 20 qmax.pop_front(); 21 } 22 if (i >= w - 1) //When the traversed element is sufficient for a window size, the largest arr array element in the selection window is stored in the array res. 23 { 24 res[index++] = arr[qmax.front()]; 25 } 26 } 27 return res; //return the array of res 28 29 }
time complexity:O(n)
This method has lower time complexity and better performance than the first one.
以上是关于1.7 Generate an array of window maximums的主要内容,如果未能解决你的问题,请参考以下文章