关于博弈论(,,有时间的时候补坑)
Posted gtbd
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了关于博弈论(,,有时间的时候补坑)相关的知识,希望对你有一定的参考价值。
很喜欢博弈论的题!才不是因为它代码短
那么我们接下来就来看一下博弈论及其算法实现
大家在日常生活中应该都接触过五子棋,它其实也有先手有必赢策略的游戏,有人也会说我就算先手我也会输啊~
所以,博弈论问题都有一个前提,那就是参与者都够聪明(没有歧义昂)
一.巴什博弈(bash game)
有一堆物品,包含n个,两个人轮流从中取出一个,最后不能取到的人输。
考虑到 若n=m+1 那么 第一个人不论如何取都不能取胜。
进一步我们发现 若 n=k*(m+1)+r; 先取者拿走 r 个,那么后者再拿(1~m)个 n=(k-1)*(m+1)+s;
先取者再拿走s 个 最后总能造成 剩下n=m+1 的局面。
因此,此时先手有必赢策略。
相对应的,若n=k*(m+1) 那么先取者必输。
因此我们可以写出对应的程序(默认 n m都大于0)
有N堆时也一样,只不过是加起来再判断而已。
二.尼姆博弈(Nimm Game)
必胜局面:经过1次操作后可以达到必败局面。
即当前局面不是必败局面就是必胜局面,而必胜局面可以一步转变成必败局面。
最终状态:
(1)最后剩下一堆石子;(必胜局面)
(2)剩下两堆,每堆一个;(必败局面)
(3)当石子剩下两堆,其中一堆只剩下1颗,另一堆剩下多于n颗石子时,当前取的人只需将多于1颗的那一堆取出n-1颗,则局面变为刚才提到的必败局面。(必胜局面)
判断当前局势是否为必胜(必败)局势:
这个问题其实是可以用巴什博弈来看的,但是我们要用的是威佐夫博奕。
威佐夫博奕(Wythoff Game):有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。
这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,...,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。
可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有如下三条性质:
1、任何自然数都包含在一个且仅有一个奇异局势中。
由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak-1 + k-1 = bk-1 > ak-1 。所以性质1。成立。
2、任意操作都可将奇异局势变为非奇异局势。
事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。
3、采用适当的方法,可以将非奇异局势变为奇异局势。
假设面对的局势是(a,b),若 b = a,则同时从两堆中取走 a 个物体,就变为了奇异局势(0,0);如果a = ak ,b > bk,那么,取走b - bk个物体,即变为奇异局势;如果 a = ak , b < bk ,则同时从两堆中拿走 ak - ab - ak个物体,变为奇异局势( ab - ak , ab - ak+ b - ak);如果a > ak ,b= ak + k,则从第一堆中拿走多余的数量a - ak 即可;如果a < ak ,b= ak + k,分两种情况,第一种,a=aj (j < k),从第二堆里面拿走 b - bj 即可;第二种,a=bj (j < k),从第二堆里面拿走 b - aj 即可。
从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。
那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:
ak =[k(1+√5)/2],bk= ak + k (k=0,1,2,...,n 方括号表示取整函数)
奇妙的是其中出现了黄金分割数(1+√5)/2 = 1.618...,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[j(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。
虽然你单身,但是你胖若两人。
以上是关于关于博弈论(,,有时间的时候补坑)的主要内容,如果未能解决你的问题,请参考以下文章