使用tensorflow进行简单的线性回归

Posted guanzhicheng

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用tensorflow进行简单的线性回归相关的知识,希望对你有一定的参考价值。

使用tensorflow进行简单的线性回归

标签(空格分隔): tensorflow


数据准备

  • 使用np.random.uniform()生成x方向的数据
  • 使用np.random.uniform()生成bias数据
  • 直线方程为y=0.1x + 0.2
  • 使用梯度下降算法

代码

import numpy as np
import tensorflow as tf
path = ‘D:	ensorflow_quantailiblog_tmp‘

# 生成x数据
points = 100
vectors = []
for i in range(points):  # y=0.1*x + 0.2
    x = np.random.uniform(0, 0.66)
    y = x * 0.1 + 0.2 + np.random.uniform(0, 0.04)
    vectors.append([x, y])

x_data = [v[0] for v in vectors]
y_data = [v[1] for v in vectors]

#形成计算图
w = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = w * x_data + b
#定义损失函数
loss = tf.reduce_mean(tf.square(y-y_data))
#定义优化器
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
#对计算图开始计算
with tf.Session() as sess:
    init = tf.global_variables_initializer()
    sess.run(init)
    for step in range(1000):
        sess.run(train)
        if step%5==0:
            print(step,sess.run(loss),sess.run(w),sess.run(b))
    #生成计算日志
    writer = tf.Summary.FileWriter(path,sess.graph)

结果汇总:

技术分享图片

以上是关于使用tensorflow进行简单的线性回归的主要内容,如果未能解决你的问题,请参考以下文章

机器学习与Tensorflow——机器学习基本概念tensorflow实现简单线性回归

tensorflow的线性回归得到明显的均方误差

Tensorflow 多元线性回归结果为 NaN

TensorFlow|非线性回归

如何使用 tensorflow 训练一个简单的非线性回归模型?

线性回归详解(代码实现+理论证明)