学习神经网络

Posted zhubinglong

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了学习神经网络相关的知识,希望对你有一定的参考价值。

看不进去高深的理论,就下了个期刊小论文(基于Excel技术平台人工神经网络BP模型及应用_邹文安.pdf),配合下载的一个excel(内含vba代码实现的BP神经网络 https://wenku.baidu.com/view/167d9400eff9aef8941e0655.html?from=search )来学习。

干什么的呢,我猜是输入给定的二进制数,输出给定的二进制数,找到这个函数关系。

技术分享图片


 

 

技术分享图片

技术分享图片

技术分享图片

技术分享图片
  1 Const N = 7, M = 5, L = 4, P = 10
  2 N为输入层节点个数, M为隐含层节点个数, L为输出层节点个数, P为训练样本
  3 Const PARA_eta = 0.5, PARA_alpha = 0.5, PARA_Emin = 0.2
  4 PARA_eta为学习率, PARA_alpha动量系数, PARA_Emin总误差的精度要求
  5 Const Calcu_12 = 2
  6 Calcu_12取1为(常规BP算法);取2为(增加动量项);
  7 
  8 Dim IN_PUT(1 To N), OUT_Y(1 To M), OUT_O(1 To L), OUT_dO(1 To L) As Variant
  9 IN_PUT(1 To N)为输入向量, OUT_Y(1 To M)为隐层输出向量, OUT_O(1 To L)为输出层输出向量,
 10 OUT_dO(1 To L)为期望输出向量,
 11 
 12 Dim PARA_12(0 To N, 1 To M), PARA_23(0 To M, 1 To L) As Variant
 13 PARA_12(0 To N, 1 To M)为输入-隐层权值, PARA_23(0 To M, 1 To L)为隐层-输出权值
 14 
 15 Dim PARA_12d1(1 To M), PARA_23d1(1 To L) As Variant                 误差δ
 16 Dim PARA_12d2(0 To N, 1 To M), PARA_23d2(0 To M, 1 To L) As Variant 误差Δ
 17 Dim PARA_INT(0 To N, 1 To P), PARA_OUT(1 To L, 1 To P) As Variant
 18 PARA_INT(0 To N, 1 To P)为训练样本, PARA_OUT(1 To L, 1 To P)为期望输出
 19 
 20 Dim PARA_E, PARA_Ep As Variant
 21 PARA_E为总输出误差, PARA_Ep训练样本误差
 22 
 23 Dim q, p_i As Integer
 24 Dim PARA_P(1 To 2, 1 To P) As Variant
 25 Dim int_i1, int_i2, int_i3, int_i4, int_CC, I_Res As Integer
 26 Dim int_p, int_k As Integer
 27 Dim para_a1, para_a2, para_a3, time_a, time_b, C_C As Variant
 28 
 29 AA训练与测试
 30 Sub AA训练与测试()
 31     I_Res = MsgBox("欢迎使用训练网络程序!可以开始训练了吗?", 4 + 64, "<训练>提示!")
 32     If I_Res = 6 Then
 33         BB训练程序
 34         If q > 10000 Then
 35             Masg_box = MsgBox("总算结束了!“训练”运行结束。  ", 0 + 16, "<结束>提示!")
 36             GoTo line1
 37         End If
 38         I_Res = MsgBox("是否测试网络?", 4 + 48, "<测试>提示!")
 39         If I_Res = 6 Then
 40             C_C = 0
 41             CC测试程序
 42             Masg_box = MsgBox("恭喜你!“测试”运行结束。  ", 0 + 0, "<结束>提示!")
 43         End If
 44         GoTo line1
 45     End If
 46     I_Res = MsgBox("欢迎使用测试网络程序!!!" & Chr(10) & "可以开始测试了吗?", 4 + 64, "<测试>提示!")
 47     If I_Res = 6 Then
 48         C_C = InputBox("请辅助测试用时所需的循环次数。", "<循环次数>提示!", 0)
 49         If C_C <> "" Then
 50             int_i1 = Len(C_C)
 51             For int_i2 = 1 To int_i1
 52                 If Asc(Mid(C_C, int_i2, 1)) < 48 Or Asc(Mid(C_C, int_i2, 1)) > 57 Then
 53                     GoTo line1
 54                 End If
 55             Next int_i2
 56             CC测试程序
 57         End If
 58     End If
 59 line1:
 60 End Sub
 61 结束AA训练与测试
 62 
 63 AA训练程序
 64 Function BB训练程序()
 65 
 66     Worksheets("Sheet2").Activate   激活工作表Sheet2
 67     读取训练输入距阵
 68     For int_i1 = 1 To P
 69         PARA_INT(0, int_i1) = -1
 70         For int_i2 = 1 To N
 71             PARA_INT(int_i2, int_i1) = Sheet1.Cells(int_i2 + 1, int_i1).Value
 72         Next int_i2
 73     Next int_i1
 74     结束读取训练输入距阵
 75     
 76     读取期望输出距阵
 77     For int_i1 = 1 To P
 78         For int_i2 = 1 To L
 79             PARA_OUT(int_i2, int_i1) = Sheet1.Cells(int_i2 + 10, int_i1).Value
 80         Next int_i2
 81     Next int_i1
 82     结束期望输出距阵
 83     
 84     权值距阵赋初值
 85     For int_i1 = 1 To M
 86         For int_i2 = 0 To N
 87             PARA_12(int_i2, int_i1) = (Rnd() - 0.5)
 88         Next int_i2
 89     Next int_i1
 90     For int_i1 = 1 To L
 91         For int_i2 = 0 To M
 92             If int_i2 Mod 2 Then 如果行数对2取余等于1则赋值为1
 93                PARA_23(int_i2, int_i1) = 1
 94             Else
 95                PARA_23(int_i2, int_i1) = -1
 96             End If
 97         Next int_i2
 98     Next int_i1
 99     结束权值距阵赋初值
100     
101     清除以有的输出距阵V
102     For int_i1 = 0 To N
103         For int_i2 = 1 To M + 2
104             Sheet2.Cells(int_i1 + 5, int_i2).Value = ""
105         Next int_i2
106     Next int_i1
107     结束清除
108     
109     清除以有的输出距阵W
110     For int_i1 = 0 To M + 2
111         For int_i2 = 1 To L
112             Sheet2.Cells(int_i1 + 14, int_i2).Value = ""
113         Next int_i2
114     Next int_i1
115     结束清除
116    
117     q = 0
118     总训练次数归零
119     
120     Sheet2.Range(Cells(2, 5), Cells(3, 7)).ClearContents
121     time_a = Now()
122     计算开始时刻
123 
124 Stude1:
125     学习准备
126     PARA_Ep = 0     训练样本误差
127     随机排序训练样本
128     For int_i1 = 1 To P
129         PARA_P(1, int_i1) = int_i1
130         PARA_P(2, int_i1) = Rnd()
131     Next int_i1
132     For int_i1 = 1 To P - 1
133         For int_i2 = int_i1 + 1 To P
134             If PARA_P(2, int_i1) > PARA_P(2, int_i2) Then 如果PARA_P第二行随机数 前面的大于后面的,那么进行交换,升序排列
135                 para_a1 = PARA_P(1, int_i1)
136                 PARA_P(1, int_i1) = PARA_P(1, int_i2) 第一行为序号,也跟着随机数同位移动,最终随机数升序,序号随机
137                 PARA_P(1, int_i2) = para_a1
138                 para_a2 = PARA_P(2, int_i1)
139                 PARA_P(2, int_i1) = PARA_P(2, int_i2)
140                 PARA_P(2, int_i2) = para_a2
141             End If
142         Next int_i2
143     Next int_i1
144     结束随机排序训练样本
145     结束学习准备
146 
147     开始学习
148     For int_p = 1 To P 循环10个(随机排位的)样本
149         int_k = PARA_P(1, int_p) 随机的int_k决定取出输入样本的第int_k个,也就是PARA_INT的第 int_k 列
150         For int_i1 = 1 To N
151             IN_PUT(int_i1) = PARA_INT(int_i1, int_k) 将总样本中某个样本放入一维数组
152         Next int_i1
153         For int_i1 = 1 To L
154             OUT_dO(int_i1) = PARA_OUT(int_i1, int_k) 将对应样本对应的期望输出输入一维数组
155         Next int_i1
156         
157         计算隐层各节点输出
158         For int_i1 = 1 To M
159             para_a1 = -1 * PARA_12(0, int_i1) 这个相当于偏移的b,或则称为阈值,取第一行权重值的相反数
160             For int_i2 = 1 To N
161                 para_a1 = para_a1 + IN_PUT(int_i2) * PARA_12(int_i2, int_i1) IN_PUT为某个输入样本,
162             Next int_i2
163             OUT_Y(int_i1) = 1 / (1 + Exp(-para_a1))
164         Next int_i1
165         结束计算实际隐层各节点输出
166         
167         计算输出层各节点输出
168         For int_i1 = 1 To L
169            para_a1 = -1 * PARA_23(0, int_i1)
170            For int_i2 = 1 To M
171                para_a1 = para_a1 + OUT_Y(int_i2) * PARA_23(int_i2, int_i1)
172            Next int_i2
173            OUT_O(int_i1) = 1 / (1 + Exp(-para_a1))
174         Next int_i1
175         结束计算输出层各节点输出
176         
177         计算误差
178         para_a1 = 0
179         For int_i1 = 1 To L
180             para_a1 = para_a1 + (OUT_dO(int_i1) - OUT_O(int_i1)) ^ 2 para_a1为某列的样本的所有元素的误差和delta?
181         Next int_i1
182             训练样本误差的平方,       一个样本就是一列数。     PARA_E为总输出误差
183         PARA_Ep = PARA_Ep + para_a1
184             累加 - 训练样本误差的平方
185         结束计算误差
186         
187         计算δ    求PARA_23d1
188         For int_i1 = 1 To L
189             PARA_23d1(int_i1) = (OUT_dO(int_i1) - OUT_O(int_i1)) * (1 - OUT_O(int_i1)) * OUT_O(int_i1) deltajk
190         Next int_i1
191             求  PARA_12d1
192         For int_i1 = 1 To M 权值动量项
193             para_a1 = 0
194             For int_i2 = 1 To L
195                 para_a1 = para_a1 + PARA_23d1(int_i2) * PARA_23(int_i1, int_i2) ADD(deltajk*Wjk)
196             Next int_i2
197             PARA_12d1(int_i1) = para_a1 * (1 - OUT_Y(int_i1)) * OUT_Y(int_i1)
198         Next int_i1
199         结束计算δ
200         
201         Select Case Calcu_12   取1为(常规BP算法);取2为(增加动量项);
202         Case 1
203             权值调整(常规BP算法)
204             For int_i1 = 1 To L
205                 PARA_23(0, int_i1) = PARA_23(0, int_i1) + PARA_eta * PARA_23d1(int_i1) * (-1)
206                 For int_i2 = 1 To M
207                     PARA_23(int_i2, int_i1) = PARA_23(int_i2, int_i1) + PARA_eta * PARA_23d1(int_i1) * OUT_Y(int_i2)
208                 Next int_i2
209             Next int_i1
210             For int_i1 = 1 To M
211                 PARA_12(0, int_i1) = PARA_12(0, int_i1) + PARA_eta * PARA_12d1(int_i1) * (-1)
212                 For int_i2 = 1 To N
213                     PARA_12(int_i2, int_i1) = PARA_12(int_i2, int_i1) + PARA_eta * PARA_12d1(int_i1) * IN_PUT(int_i2)
214                 Next int_i2
215             Next int_i1
216             结束权值调整(常规BP算法)
217         Case 2
218             权值调整(增加动量项)
219             For int_i1 = 1 To L
220                 PARA_23(0, int_i1) = PARA_23(0, int_i1) + PARA_eta * PARA_23d1(int_i1) * (-1)
221                 PARA_23(0, int_i1) = PARA_23(0, int_i1) + PARA_alpha * PARA_23d2(0, int_i1)
222                 PARA_23d2(0, int_i1) = PARA_eta * PARA_23d1(int_i1) * (-1)
223                 For int_i2 = 1 To M
224                     PARA_23(int_i2, int_i1) = PARA_23(int_i2, int_i1) + PARA_eta * PARA_23d1(int_i1) * OUT_Y(int_i2)
225                     PARA_23(int_i2, int_i1) = PARA_23(int_i2, int_i1) + PARA_alpha * PARA_23d2(int_i2, int_i1)
226                     PARA_23d2(int_i2, int_i1) = PARA_eta * PARA_23d1(int_i1) * OUT_Y(int_i2)
227                 Next int_i2
228             Next int_i1
229             For int_i1 = 1 To M
230                 PARA_12(0, int_i1) = PARA_12(0, int_i1) + PARA_eta * PARA_12d1(int_i1) * (-1)
231                 PARA_12(0, int_i1) = PARA_12(0, int_i1) + PARA_alpha * PARA_12d2(0, int_i1)
232                 PARA_12d2(0, int_i1) = PARA_eta * PARA_12d1(int_i1) * (-1)
233                 For int_i2 = 1 To N
234                     PARA_12(int_i2, int_i1) = PARA_12(int_i2, int_i1) + PARA_eta * PARA_12d1(int_i1) * IN_PUT(int_i2)
235                     PARA_12(int_i2, int_i1) = PARA_12(int_i2, int_i1) + PARA_alpha * PARA_12d2(int_i2, int_i1)
236                     PARA_12d2(int_i2, int_i1) = PARA_eta * PARA_12d1(int_i1) * IN_PUT(int_i2)
237                 Next int_i2
238             Next int_i1
239         结束权值调整(增加动量项)
240         End Select
241 
242         q = q + 1
243         Sheet2.Cells(3, 1).Value = q
244         输出总训练次数
245         
246         If q > 10000 Then
247             GoTo Fin_Calcu
248         End If
249         输出总训练次数超过一万次,误差未达到精度要求,结束训练。
250         
251         训练一次完毕,取下一个训练样本
252     Next int_p
253     结束学习
254     
255     PARA_E = Sqr(PARA_Ep / P)
256     总输出误差
257     Sheet2.Cells(3, 2).Value = PARA_E
258     
259     If PARA_E > PARA_Emin Then    检查误差是否达到精度要求   PARA_E为总输出误差
260         GoTo Stude1          误差未达到精度要求,返回“学习准备”-“开始学习”
261     End If
262 
263 Fin_Calcu:
264 
265     time_b = Now()
266     计算结束时刻
267     
268     Sheet2.Cells(2, 5) = "用时"
269     Sheet2.Cells(3, 5) = time_b - time_a
270     Sheet2.Cells(2, 6) = "开始"
271     Sheet2.Cells(3, 6) = time_a
272     Sheet2.Cells(2, 7) = "结束"
273     Sheet2.Cells(3, 7) = time_b
274     输出计算用时情况
275     
276     输出PARA_12距阵的值
277     For int_i1 = 0 To N
278         For int_i2 = 1 To M
279             Sheet2.Cells(int_i1 + 5, int_i2).Value = PARA_12(int_i1, int_i2)
280         Next int_i2
281     Next int_i1
282     结束输出PARA_12距阵的值
283     
284     输出PARA_23距阵的值
285     For int_i1 = 0 To M
286         For int_i2 = 1 To L
287             Sheet2.Cells(int_i1 + 14, int_i2).Value = PARA_23(int_i1, int_i2)
288         Next int_i2
289     Next int_i1
290     结束输出PARA_23距阵的值
291 
292 End Function
293 FIN AA训练程序
294 
295 Function CC测试程序()
296 
297     Worksheets("Sheet3").Activate     激活工作表Sheet3
298 
299     读取输入矩阵
300     For int_i1 = 1 To P
301         PARA_INT(0, int_i1) = -1
302         For int_i2 = 1 To N
303             PARA_INT(int_i2, int_i1) = Sheet1.Cells(int_i2 + 1, int_i1).Value
304         Next int_i2
305     Next int_i1
306     结束读取输入矩阵
307     
308     读取权值矩阵
309     For int_i1 = 1 To M
310         For int_i2 = 0 To N
311             PARA_12(int_i2, int_i1) = Sheet2.Cells(int_i2 + 5, int_i1).Value V
312         Next int_i2
313     Next int_i1
314     For int_i1 = 1 To L
315         For int_i2 = 0 To M
316             PARA_23(int_i2, int_i1) = Sheet2.Cells(int_i2 + 14, int_i1).Value M
317         Next int_i2
318     Next int_i1
319     结束权值距阵赋初值
320 
321     Sheet3.Range(Cells(16, 3), Cells(17, 5)).ClearContents
322     time_a = Now()
323     测试开始时刻
324     
325     辅助测试用时
326     Sheet3.Cells(16, 2) = ""
327     Sheet3.Cells(17, 2) = ""
328     If C_C = 0 Then
329         GoTo PION_100A
330     End If
331     Sheet3.Cells(16, 2) = "循环次数"
332     Sheet3.Cells(17, 2) = C_C
333     For int_CC = 1 To C_C
334         int_k = 0
335         For int_p = 1 To P
336             For int_i1 = 1 To N
337                 IN_PUT(int_i1) = PARA_INT(int_i1, int_p)
338             Next int_i1
339             计算隐层各节点输出
340             For int_i1 = 1 To M
341                 para_a1 = -1 * PARA_12(0, int_i1)
342                 For int_i2 = 1 To N
343                     para_a1 = para_a1 + IN_PUT(int_i2) * PARA_12(int_i2, int_i1)
344                 Next int_i2
345                 OUT_Y(int_i1) = 1 / (1 + Exp(-para_a1))
346             Next int_i1
347             结束计算实际隐层各节点输出
348             
349             计算输出层各节点输出
350             For int_i1 = 1 To L
351                para_a1 = -1 * PARA_23(0, int_i1)
352                For int_i2 = 1 To M
353                    para_a1 = para_a1 + OUT_Y(int_i2) * PARA_23(int_i2, int_i1)
354                Next int_i2
355                OUT_O(int_i1) = 1 / (1 + Exp(-para_a1))
356             Next int_i1
357             结束计算输出层各节点输出
358         
359             计算十进制结果
360             para_a1 = 0
361             For int_i1 = 1 To L
362                 OUT_O(int_i1) = Round(OUT_O(int_i1))
363                 para_a1 = para_a1 + OUT_O(int_i1) * 2 ^ (L - int_i1)
364             Next int_i1
365             结束计算十进制结果
366         Next int_p
367     Next int_CC
368     结束辅助测试用时
369 PION_100A:
370     
371     int_k = 0
372     For int_p = 1 To P
373         For int_i1 = 1 To N
374             IN_PUT(int_i1) = PARA_INT(int_i1, int_p) 在10个样本中取出一个样本(一列)
375         Next int_i1
376         计算隐层各节点输出
377         For int_i1 = 1 To M
378             para_a1 = -1 * PARA_12(0, int_i1)
379             For int_i2 = 1 To N
380                 para_a1 = para_a1 + IN_PUT(int_i2) * PARA_12(int_i2, int_i1)
381             Next int_i2
382             OUT_Y(int_i1) = 1 / (1 + Exp(-para_a1))
383         Next int_i1
384         结束计算实际隐层各节点输出
385         
386         计算输出层各节点输出
387         For int_i1 = 1 To L
388            para_a1 = -1 * PARA_23(0, int_i1)
389            For int_i2 = 1 To M
390                para_a1 = para_a1 + OUT_Y(int_i2) * PARA_23(int_i2, int_i1)
391            Next int_i2
392            OUT_O(int_i1) = 1 / (1 + Exp(-para_a1))
393         Next int_i1
394         结束计算输出层各节点输出
395     
396         输出结果
397         para_a1 = 0
398         For int_i1 = 1 To L
399             OUT_O(int_i1) = Round(OUT_O(int_i1)) 将OUT_O四舍五入,要么是0,要么是1
400             Sheet3.Cells(int_p + 2, int_i1).Value = OUT_O(int_i1) sheet3中输出一行
401             para_a1 = para_a1 + OUT_O(int_i1) * 2 ^ (L - int_i1) 将二进制化为十进制
402         Next int_i1
403         Sheet3.Cells(int_p + 2, 6).Value = para_a1
404         结束输出结果
405         
406         If (para_a1 + 1) = int_p Then
407             int_k = int_k + 1
408         End If
409         
410     Next int_p
411 
412 
413     Sheet3.Cells(13, 3).Value = 10 * int_k
414     
415     time_b = Now()
416     测试结束时刻
417 
418     Sheet3.Cells(16, 3) = "测试用时"
419     Sheet3.Cells(17, 3) = time_b - time_a
420     Sheet3.Cells(16, 4) = "开始"
421     Sheet3.Cells(17, 4) = time_a
422     Sheet3.Cells(16, 5) = "结束"
423     Sheet3.Cells(17, 5) = time_b
424     输出测试用时情况
425 
426 
427 End Function
428 FIN BB测试程序
BP神经网络代码vba

 

以上是关于学习神经网络的主要内容,如果未能解决你的问题,请参考以下文章

译文:18个实用的JavaScript代码片段,助你快速处理日常编程任务

VSCode自定义代码片段14——Vue的axios网络请求封装

VSCode自定义代码片段14——Vue的axios网络请求封装

VSCode自定义代码片段14——Vue的axios网络请求封装

在PaddlePaddle中的Notebook代码片段

20155307刘浩《网络对抗》逆向及Bof基础