Python 中文分词 jieba(小白进)
Posted 小基基o_O
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Python 中文分词 jieba(小白进)相关的知识,希望对你有一定的参考价值。
文章目录
0、安装
法1:Anaconda Prompt下输入conda install jieba
法2:Terminal下输入pip3 install jieba
1、分词
1.1、CUT函数简介
-
cut(sentence, cut_all=False, HMM=True)
- 返回 生成器,遍历生成器即可获得分词的结果 lcut(sentence)
- 返回 分词列表
import jieba
sentence = '我爱自然语言处理'
# 创建【Tokenizer.cut 生成器】对象
generator = jieba.cut(sentence)
# 遍历生成器,打印分词结果
words = '/'.join(generator)
print(words)
-
打印结果
- 我/爱/自然语言/处理
import jieba
print(jieba.lcut('我爱南海中学'))
-
打印结果
- [‘我’, ‘爱’, ‘南海中学’]
1.2、分词模式
-
精确模式
- 精确地切开 全模式
- 所有可能的词语都切出,速度快 搜索引擎模式
- 在精确模式的基础上,对长词再次切分
import jieba
sentence = '订单数据分析'
print('精准模式:', jieba.lcut(sentence))
print('全模式:', jieba.lcut(sentence, cut_all=True))
print('搜索引擎模式:', jieba.lcut_for_search(sentence))
-
打印结果
-
精准模式: [‘订单’, ‘数据分析’]
全模式: [‘订单’, ‘订单数’, ‘单数’, ‘数据’, ‘数据分析’, ‘分析’]
搜索引擎模式: [‘订单’, ‘数据’, ‘分析’, ‘数据分析’]
1.3、词性标注
- jieba.posseg
import jieba.posseg as jp
sentence = '我爱Python数据分析'
posseg = jp.cut(sentence)
for i in posseg:
print(i.__dict__)
# print(i.word, i.flag)
-
打印结果
-
‘word’: ‘我’, ‘flag’: ‘r’
‘word’: ‘爱’, ‘flag’: ‘v’
‘word’: ‘Python’, ‘flag’: ‘eng’
‘word’: ‘数据分析’, ‘flag’: ‘l’
标注 | 解释 | 标注 | 解释 | 标注 | 解释 |
---|---|---|---|---|---|
a | 形容词 | mq | 数量词 | tg | 时语素 |
ad | 副形词 | n | 名词 | u | 助词 |
ag | 形语素 | ng | 例:义 乳 亭 | ud | 例:得 |
an | 名形词 | nr | 人名 | ug | 例:过 |
b | 区别词 | nrfg | 也是人名 | uj | 例:的 |
c | 连词 | nrt | 也是人名 | ul | 例:了 |
d | 副词 | ns | 地名 | uv | 例:地 |
df | 例:不要 | nt | 机构团体 | uz | 例:着 |
dg | 副语素 | nz | 其他专名 | v | 动词 |
e | 叹词 | o | 拟声词 | vd | 副动词 |
f | 方位词 | p | 介词 | vg | 动语素 |
g | 语素 | q | 量词 | vi | 例:沉溺于 等同于 |
h | 前接成分 | r | 代词 | vn | 名动词 |
i | 成语 | rg | 例:兹 | vq | 例:去浄 去过 唸过 |
j | 简称略语 | rr | 人称代词 | x | 非语素字 |
k | 后接成分 | rz | 例:这位 | y | 语气词 |
l | 习用语 | s | 处所词 | z | 状态词 |
m | 数词 | t | 时间词 | zg | 例:且 丗 丟 |
1.4、词语出现的位置
- jieba.tokenize(sentence)
import jieba
sentence = '订单数据分析'
generator = jieba.tokenize(sentence)
for position in generator:
print(position)
-
打印结果
-
(‘订单’, 0, 2)
(‘数据分析’, 2, 6)
2、词典
2.1、默认词典
import jieba, os, pandas as pd
# 词典所在位置
print(jieba.__file__)
jieba_dict = os.path.dirname(jieba.__file__) + r'\\dict.txt'
# 读取字典
df = pd.read_table(jieba_dict, sep=' ', header=None)[[0, 2]]
print(df.head())
# 转字典
dt = dict(df.values)
print(dt.get('暨南大学'))
2.2、添词和删词
-
往词典添词
- add_word(word, freq=None, tag=None) 往词典删词,等价于
- del_word(word)
add_word(word, freq=0)
import jieba
sentence = '天长地久有时尽,此恨绵绵无绝期'
# 添词
jieba.add_word('时尽', 999, 'nz')
print('添加【时尽】:', jieba.lcut(sentence))
# 删词
jieba.del_word('时尽')
print('删除【时尽】:', jieba.lcut(sentence))
-
打印结果
-
添加【时尽】: [‘天长地久’, ‘有’, ‘时尽’, ‘,’, ‘此恨绵绵’, ‘无’, ‘绝期’]
删除【时尽】: [‘天长地久’, ‘有时’, ‘尽’, ‘,’, ‘此恨绵绵’, ‘无’, ‘绝期’]
2.3、自定义词典加载
- 新建词典,按照格式【单词 词频 词性】添词,以UTF-8编码保存
- 使用函数
load_userdict
加载词典
import os, jieba
# 创建自定义字典
my_dict = 'my_dict.txt'
with open(my_dict, 'w', encoding='utf-8') as f:
f.write('慕容紫英 9 nr\\n云天河 9 nr\\n天河剑 9 nz')
# 加载字典进行测试
sentence = '慕容紫英为云天河打造了天河剑'
print('加载前:', jieba.lcut(sentence))
jieba.load_userdict(my_dict)
print('加载后:', jieba.lcut(sentence))
os.remove(my_dict)
-
打印结果
-
加载前: [‘慕容’, ‘紫英为’, ‘云’, ‘天河’, ‘打造’, ‘了’, ‘天河’, ‘剑’]
加载后: [‘慕容紫英’, ‘为’, ‘云天河’, ‘打造’, ‘了’, ‘天河剑’]
2.4、使单词中的字符连接或拆分
- suggest_freq(segment, tune=False)
import jieba
sentence = '上穷碧落下黄泉,两处茫茫皆不见'
print('修正前:', ' | '.join(jieba.cut(sentence)))
jieba.suggest_freq(('落', '下'), True)
print('修正后:', ' | '.join(jieba.cut(sentence)))
-
打印结果
-
修正前: 上穷 | 碧 | 落下 | 黄泉 | , | 两处 | 茫茫 | 皆 | 不见
修正后: 上穷 | 碧落 | 下 | 黄泉 | , | 两处 | 茫茫 | 皆 | 不见
3、jieba分词原理
- 基于词典,对句子进行词图扫描,生成所有成词情况所构成的有向无环图(Directed Acyclic Graph)
- 根据DAG,反向计算最大概率路径(动态规划算法;取对数防止下溢,乘法运算转为加法)
- 根据路径获取最大概率的分词序列
import jieba
sentence = '中心小学放假'
DAG = jieba.get_DAG(sentence)
print(DAG)
route =
jieba.calc(sentence, DAG, route)
print(route)
-
DAG
- 0: [0, 1, 3], 1: [1], 2: [2, 3], 3: [3], 4: [4, 5], 5: [5] 最大概率路径
-
6: (0, 0), 5: (
-9.4
, 5), 4: (-12.6
, 5), 3: (-20.8
, 3), 2: (-22.5
, 3), 1: (-30.8
, 1), 0: (-29.5
, 3)
4、识别【带空格的词】
示例:使Blade Master这类中间有空格的词被识别
import jieba, re
sentence = 'Blade Master疾风刺杀Archmage'
jieba.add_word('Blade Master') # 添词
print('修改前:', jieba.lcut(sentence))
jieba.re_han_default = re.compile('(.+)', re.U) # 修改格式
print('修改后:', jieba.lcut(sentence))
-
打印结果
-
修改前: [‘
Blade
’, ’ ', ‘Master
’, ‘疾风’, ‘刺杀’, ‘Archmage’]
修改后: [‘Blade Master
’, ‘疾风’, ‘刺杀’, ‘Archmage’]
5、其它
5.1、并行分词
运行环境:linux系统
开启并行分词模式,参数n为并发数:jieba.enable_parallel(n)
关闭并行分词模式:jieba.disable_parallel()
5.2、关键词提取
- 基于TF-IDF:jieba.analyse
- 基于TextRank:jieba.textrank
import jieba.analyse as ja, jieba
text = '柳梦璃施法破解了狐仙的法术'
jieba.add_word('柳梦璃', tag='nr')
keywords1 = ja.extract_tags(text, allowPOS=('n', 'nr', 'ns', 'nt', 'nz'))
print('基于TF-IDF:', keywords1)
keywords2 = ja.textrank(text, allowPOS=('n', 'nr', 'ns', 'nt', 'nz'))
print('基于TextRank:', keywords2)
-
打印结果
-
基于TF-IDF: [‘柳梦璃’, ‘狐仙’, ‘法术’]
基于TextRank: [‘狐仙’, ‘柳梦璃’, ‘法术’]
5.3、修改HMM参数
import jieba
text = '柳梦璃解梦C法'
print(jieba.lcut(text, HMM=False)) # ['柳', '梦', '璃', '解梦', 'C', '法']
print(jieba.lcut(text)) # ['柳梦璃', '解梦', 'C', '法']
jieba.finalseg.emit_P['B']['C'] = -1e-9 # begin
print(jieba.lcut(text)) # ['柳梦璃', '解梦', 'C', '法']
jieba.finalseg.emit_P['M']['梦'] = -100 # middle
print(jieba.lcut(text)) # ['柳', '梦璃', '解梦', 'C', '法']
jieba.finalseg.emit_P['S']['梦'] = -.1 # single
print(jieba.lcut(text)) # ['柳', '梦', '璃', '解梦', 'C', '法']
jieba.finalseg.emit_P['E']['梦'] = -.01 # end
print(jieba.lcut(text)) # ['柳梦', '璃', '解梦', 'C', '法']
jieba.del_word('柳梦') # Force_Split_Words
print(jieba.lcut(text)) # ['柳', '梦', '璃', '解梦', 'C', '法']
-
print
-
[‘柳’, ‘梦’, ‘璃’, ‘解梦’, ‘C’, ‘法’]
[‘柳梦璃’, ‘解梦’, ‘C’, ‘法’]
[‘柳梦璃’, ‘解梦’, ‘C’, ‘法’]
[‘柳’, ‘梦璃’, ‘解梦’, ‘C’, ‘法’]
[‘柳’, ‘梦’, ‘璃’, ‘解梦’, ‘C’, ‘法’]
[‘柳梦’, ‘璃’, ‘解梦’, ‘C’, ‘法’]
[‘柳’, ‘梦’, ‘璃’, ‘解梦’, ‘C’, ‘法’]
6、词法分析(新版)
标签 | 含义 | 标签 | 含义 | 标签 | 含义 | 标签 | 含义 |
---|---|---|---|---|---|---|---|
n | 普通名词 | f | 方位名词 | s | 处所名词 | t | 时间 |
nr | 人名 | ns | 地名 | nt | 机构名 | nw | 作品名 |
nz | 其他专名 | v | 普通动词 | vd | 动副词 | vn | 名动词 |
a | 形容词 | ad | 副形词 | an | 名形词 | d | 副词 |
m | 数量词 | q | 量词 | r | 代词 | p | 介词 |
c | 连词 | u | 助词 | xc | 其他虚词 | w | 标点符号 |
PER | 人名 | LOC | 地名 | ORG | 机构名 | TIME | 时间 |
from jieba import enable_paddle, posseg # pip install jieba --upgrade
enable_paddle() # pip install paddlepaddle-tiny==1.6.1
print(posseg.lcut('小基基在南海注册桂城人工智能公司'))
print(posseg.lcut('小基基在南海注册桂城人工智能公司', use_paddle=True))
-
print
-
[pair(‘小基基’, ‘nr’), pair(‘在’, ‘p’), pair(‘南海’, ‘ns’), pair(‘注册’, ‘v’), pair(‘桂城’, ‘ns’), pair(‘人工智能’, ‘n’), pair(‘公司’, ‘n’)]
[pair(‘小基基’, ‘PER’), pair(‘在’, ‘p’), pair(‘南海’, ‘LOC’), pair(‘注册’, ‘v’), pair(‘桂城人工智能公司’, ‘ORG’)]
以上是关于Python 中文分词 jieba(小白进)的主要内容,如果未能解决你的问题,请参考以下文章