生成模型与判别模型

Posted excellent-ship

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了生成模型与判别模型相关的知识,希望对你有一定的参考价值。

概念

监督学习方法可以分为生成方法(generative approach)和判别方法(discriminative approach),学习到的模型对应地可分为生成模型(generative model)和判别模型(discriminative model).生成模型的计算过程为,先根据既有数据学习出联合概率分布(P(X,Y)),然后再根据输入特征的分布(P(X))来学习出条件概率分布,表达式为:
[ P(Y|X) = frac{P(X,Y)}{P(X)} ag{1} ]
而判别模型则是求出决策函数之后,根据决策函数输出对应的结果,也可直接学习出条件概率分布来预测,但是,判别模型不会去学习数据的联合概率分布.
[ Y = f(X) ag{2} ]

特点

生成模型描述了给定输入(X)产生输出(Y)的生成关系,特点:

  • 可以还原出数据的联合概率分布
  • 学习收敛速度比较快,即在样本容量增加的时候,模型可以更快地收敛于真实的模型
  • 存在隐变量时,仍然可以用生成方法来学习

判别模型能够直接用决策函数或者条件概率分布来预测结果,但是不学习数据的联合概率分布,特点:

  • 不能还原数据的联合概率分布
  • 学习的准确率比较高
  • 能对数据进行各种程度上的抽象,定义特征并使用特征,可以简化问题
  • 存在隐变量时,不能使用判别模型

典型模型

生成模型

  • 朴素贝叶斯法
  • 隐马尔可夫模型

判别模型

  • k近邻法
  • 支持向量机
  • 感知机
  • 决策树
  • 逻辑斯谛回归模型
  • 最大熵模型
  • 提升方法
  • 条件随机场

以上是关于生成模型与判别模型的主要内容,如果未能解决你的问题,请参考以下文章

生成式模型与判别式模型

生成模型(generative model)与判别模型(discriminative model)的区别

判别式模型与生成式模型的区别

判别式模型与生成式模型

生成模型与判别模型

判别模型生成模型与朴素贝叶斯方法