Redis深度专题「源码分析系列」从本质分析你写入Redis中的数据为什么不见了?

Posted 洛神灬殇

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Redis深度专题「源码分析系列」从本质分析你写入Redis中的数据为什么不见了?相关的知识,希望对你有一定的参考价值。

Redis数据库介绍

Redis作为一个成熟的数据存储中间件,它提供了完善的数据管理功能,比如之前我们提到过的数据过期和今天我们要讲的数据淘汰(evict)策略。

数据的局部性原理

贯穿计算机学科的原理局部性原理,这里可以明确告诉你,局部性原理在缓存场景有这样两种现象,

  1. 最新的数据下次被访问的概率越高。
  2. 被访问次数越多的数据下次被访问的概率越高。 这里我们可以简单认为被访问的概率越高价值越大。

基于上述两种现象,我们可以指定出两种策略

  1. 淘汰掉最早未被访问的数据,LRU(Least Recently Used)。
  2. 淘汰掉访被访问频次最低的数据,LFU(Least Frequently Used)。

除了LRU和LFU之外,还可以随机淘汰。这就是将数据一视同仁,随机选取一部分淘汰。实际上Redis实现了以上3中策略,你使用时可以根据具体的数据配置某个淘汰策略。

除了上述三种策略外,Redis还为由过期时间的数据提供了按TTL淘汰的策略,其实就是淘汰剩余TTL中最小的数据。另外需要注意的是Redis的淘汰策略可以配置在全局或者是有过期时间的数据上。

Redis的问题背景

我们有时候会遇到这样的事情,当想redis写入一些数据后,再次查询发现数据不见了,这是怎么回事呢?数据明明过期了,怎么还占用着内存?

  • 知道Redis主要是基于内存来进行高性能、高并发的读写操作的。

  • 然而内存是有限的,比如 redis 就只能用 10G,你要是往里面写了 20G 的数据,会咋办?当然会干掉 10G 的数据,然后就保留 10G 的数据了。那干掉哪些数据?保留哪些数据?这就要根据设置的redis的淘汰机制来选择了。数据明明过期了,竟然还占用这内存,这些都是由 redis 的过期策略来决定。

Redis的过期策略

Redis的过期策略包括两种,分别是定期删除和惰性删除:

  • 定期删除:指的是Redis默认是每隔100ms就随机抽取一些设置了过期时间的key,检查其是否过期,如果过期就删除。(不能完全删除)

  • 惰性删除:直接查询数据的时候,redis会先查看一些这个数据是否已经过期,如果过期,就进行删除。(不能完全删除数据)

Redis的删除内存策略

定期删除和惰性删除都存在着一些问题,如果定期删除漏掉了很多过期key,然后你也没及时去查,也就没走惰性删除,此时有可能导致大量过期 key 堆积在内存里,导致redis 内存块耗尽了

Redis内存淘汰机制

Redis中数据淘汰实际上是指的在内存空间不足时,清理掉某些数据以节省内存空间。 虽然Redis已经有了过期的策略,它可以清理掉有效期外的数据。

如果过期的数据被清理之后存储空间还是不够怎么办?是不是还可以再删除掉一部分数据? 在缓存这种场景下 这个问题的答案是可以,因为这个数据即便在Redis中找不到,也可以从被缓存的数据源中找到。

所以在某些特定的业务场景下,我们是可以丢弃掉Redis中部分旧数据来给新数据腾出空间。

内存淘汰机制包括以下几种方式:

众所周知,redis是一个内存数据库,所有的键值对都是存储在内存中。当数据变多之后,由于内存有限就要淘汰一些键值对,使得内存有足够的空间来保存新的键值对。在redis中,通过设置server.maxmemory来限定内存的使用(server.maxmemory为0,不限制内存),到达server.maxmemory就会触发淘汰机制。

  • noeviction: 当内存不足以容纳新写入数据时,新写入操作会报错,一般不用。
  • Allkeys-lru: 当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的 key(最常用)。
  • allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个 key(很少用)。
  • volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的 key(很少用)。
  • volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。
  • volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。
设置内存淘汰机制的方式:

在redis.conf中:

  • maxmemory 100mb 最大内存设置,如果0代表无限 ;
  • maxmemory-policy: Allkeys-lru

Redis在每次执行客户端的命令的时候都会检查使用内存是否超过server.maxmemory,如果超过就进行淘汰数据。

int processCommand(client *c) 
	……//server.maxmemory为0,表示对内存没有限制
	if (server.maxmemory) 
	//判断内存,进行内存淘汰
        int retval = freeMemoryIfNeeded();
        ……
    
    ……

evict何时执行

在Redis每次处理命令的时候,都会检查内存空间,并尝试去执行evict,因为有些情况下不需要执行evict,这个可以从isSafeToPerformEvictions中可以看出端倪。

static int isSafeToPerformEvictions(void) 
    /* 没有lua脚本执行超时,也没有在做数据超时 */
    if (server.lua_timedout || server.loading) return 0;

    /* 只有master才需要做evict */
    if (server.masterhost && server.repl_slave_ignore_maxmemory) return 0;

    /* 当客户端暂停时,不需要evict,因为数据是不会变化的 */
    if (checkClientPauseTimeoutAndReturnIfPaused()) return 0;

    return 1;

执行回收驱逐操作

int performEvictions(void) 
    if (!isSafeToPerformEvictions()) return EVICT_OK;

    int keys_freed = 0;
    size_t mem_reported, mem_tofree;
    long long mem_freed; /* May be negative */
    mstime_t latency, eviction_latency;
    long long delta;
    int slaves = listLength(server.slaves);
    int result = EVICT_FAIL;

    if (getMaxmemoryState(&mem_reported,NULL,&mem_tofree,NULL) == C_OK)
        return EVICT_OK;

    if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
        return EVICT_FAIL;  /* We need to free memory, but policy forbids. */

    unsigned long eviction_time_limit_us = evictionTimeLimitUs();

    mem_freed = 0;

    latencyStartMonitor(latency);

    monotime evictionTimer;
    elapsedStart(&evictionTimer);

    while (mem_freed < (long long)mem_tofree) 
        int j, k, i;
        static unsigned int next_db = 0;
        sds bestkey = NULL;
        int bestdbid;
        redisDb *db;
        dict *dict;
        dictEntry *de;

        if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
            server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
        
            struct evictionPoolEntry *pool = EvictionPoolLRU;

            while(bestkey == NULL) 
                unsigned long total_keys = 0, keys;

                /* We don't want to make local-db choices when expiring keys,
                 * so to start populate the eviction pool sampling keys from
                 * every DB. 
                 * 先从dict中采样key并放到pool中 */
                for (i = 0; i < server.dbnum; i++) 
                    db = server.db+i;
                    dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
                            db->dict : db->expires;
                    if ((keys = dictSize(dict)) != 0) 
                        evictionPoolPopulate(i, dict, db->dict, pool);
                        total_keys += keys;
                    
                
                if (!total_keys) break; /* No keys to evict. */

                /* 从pool中选择最适合淘汰的key. */
                for (k = EVPOOL_SIZE-1; k >= 0; k--) 
                    if (pool[k].key == NULL) continue;
                    bestdbid = pool[k].dbid;

                    if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) 
                        de = dictFind(server.db[pool[k].dbid].dict,
                            pool[k].key);
                     else 
                        de = dictFind(server.db[pool[k].dbid].expires,
                            pool[k].key);
                    

                    /* 从淘汰池中移除. */
                    if (pool[k].key != pool[k].cached)
                        sdsfree(pool[k].key);
                    pool[k].key = NULL;
                    pool[k].idle = 0;

                    /* If the key exists, is our pick. Otherwise it is
                     * a ghost and we need to try the next element. */
                    if (de) 
                        bestkey = dictGetKey(de);
                        break;
                     else 
                        /* Ghost... Iterate again. */
                    
                
            
        

        /* volatile-random and allkeys-random 策略 */
        else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
                 server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
        
            /* 当随机淘汰时,我们用静态变量next_db来存储当前执行到哪个db了*/
            for (i = 0; i < server.dbnum; i++) 
                j = (++next_db) % server.dbnum;
                db = server.db+j;
                dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
                        db->dict : db->expires;
                if (dictSize(dict) != 0) 
                    de = dictGetRandomKey(dict);
                    bestkey = dictGetKey(de);
                    bestdbid = j;
                    break;
                
            
        

        /* 从dict中移除被选中的key. */
        if (bestkey) 
            db = server.db+bestdbid;
            robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
            propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
            /*我们单独计算db*Delete()释放的内存量。实际上,在AOF和副本传播所需的内存可能大于我们正在释放的内存(删除key)
            ,如果我们考虑这点的话会很绕。由signalModifiedKey生成的CSC失效消息也是这样。
            因为AOF和输出缓冲区内存最终会被释放,所以我们只需要关心key空间使用的内存即可。*/
            delta = (long long) zmalloc_used_memory();
            latencyStartMonitor(eviction_latency);
            if (server.lazyfree_lazy_eviction)
                dbAsyncDelete(db,keyobj);
            else
                dbSyncDelete(db,keyobj);
            latencyEndMonitor(eviction_latency);
            latencyAddSampleIfNeeded("eviction-del",eviction_latency);
            delta -= (long long) zmalloc_used_memory();
            mem_freed += delta;
            server.stat_evictedkeys++;
            signalModifiedKey(NULL,db,keyobj);
            notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
                keyobj, db->id);
            decrRefCount(keyobj);
            keys_freed++;

            if (keys_freed % 16 == 0) 
                /*当要释放的内存开始足够大时,我们可能会在这里花费太多时间,不可能足够快地将数据传送到副本,因此我们会在循环中强制传输。*/
                if (slaves) flushSlavesOutputBuffers();

                /*通常我们的停止条件是释放一个固定的,预先计算的内存量。但是,当我们*在另一个线程中删除对象时,
                最好不时*检查是否已经达到目标*内存,因为“mem\\u freed”量只在dbAsyncDelete()调用中*计算,
                而线程可以*一直释放内存。*/
                if (server.lazyfree_lazy_eviction) 
                    if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) 
                        break;
                    
                

                /*一段时间后,尽早退出循环-即使尚未达到内存限制*。如果我们突然需要释放大量的内存,不要在这里花太多时间。*/
                if (elapsedUs(evictionTimer) > eviction_time_limit_us) 
                    // We still need to free memory - start eviction timer proc
                    if (!isEvictionProcRunning) 
                        isEvictionProcRunning = 1;
                        aeCreateTimeEvent(server.el, 0,
                                evictionTimeProc, NULL, NULL);
                    
                    break;
                
            
         else 
            goto cant_free; /* nothing to free... */
        
    
    /* at this point, the memory is OK, or we have reached the time limit */
    result = (isEvictionProcRunning) ? EVICT_RUNNING : EVICT_OK;

cant_free:
    if (result == EVICT_FAIL) 
        /* At this point, we have run out of evictable items.  It's possible
         * that some items are being freed in the lazyfree thread.  Perform a
         * short wait here if such jobs exist, but don't wait long.  */
        if (bioPendingJobsOfType(BIO_LAZY_FREE)) 
            usleep(eviction_time_limit_us);
            if (getMaxmemoryState(NULL,NULL,NULL,NULL) == C_OK) 
                result = EVICT_OK;
            
        
    

    latencyEndMonitor(latency);
    latencyAddSampleIfNeeded("eviction-cycle",latency);
    return result;

释放资源如果在需要时候
int freeMemoryIfNeeded(void) 
    //获取redis内存使用
    mem_reported = zmalloc_used_memory();
    if (mem_reported <= server.maxmemory) return C_OK; 
    mem_used = mem_reported;
    if (slaves) 
        listRewind(server.slaves,&li);
        //减去slaves的output缓冲区
        while((ln = listNext(&li))) 
            ……
        
    
     //aof的缓冲区的内存使用
    if (server.aof_state != AOF_OFF) 
        mem_used -= sdslen(server.aof_buf);
        mem_used -= aofRewriteBufferSize();
    
    /* Check if we are still over the memory limit. */
    if (mem_used <= server.maxmemory) return C_OK;
    /* Compute how much memory we need to free. */
    mem_tofree = mem_used - server.maxmemory;
    mem_freed = 0;
    if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
        goto cant_free; /* 禁止驱逐数据 */
    //进行数据驱逐
    while (mem_freed < mem_tofree) 
    	……
    	sds bestkey = NULL;
        if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
            server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
           //进行ttl或者lru淘汰机制
            struct evictionPoolEntry *pool = EvictionPoolLRU;
            while(bestkey == NULL) 
                unsigned long total_keys = 0, keys;
                for (i = 0; i < server.dbnum; i++) 
                    db = server.db+i;
                    dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
                            db->dict : db->expires;
                    if ((keys = dictSize(dict)) != 0) 
                        evictionPoolPopulate(i, dict, db->dict, pool);
                        //pool根据机制构建的evictionPool
                    
                /*在evictionPool中从后往前选择一个还在存在数据库中的键值进行驱逐*/
                for (k = EVPOOL_SIZE-1; k >= 0; k--) 
                    if (pool[k].key == NULL) continue;
                    bestdbid = pool[k].dbid;
                    if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) 
                        de = dictFind(server.db[pool[k].dbid].dict,
                            pool[k].key);
                     else 
                        de = dictFind(server.db[pool[k].dbid].expires,
                            pool[k].key);
                    
                    ……
                    if (de) 
                        bestkey = dictGetKey(de);
                        break;
                     else 
                        /* Ghost... Iterate again. */
                    
                
            
        
        else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
                 server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
           /* 从db->dict或者db->expires随机选择一个键值对进行淘汰*/
            for (i = 0; i < server.dbnum; i++) 
                j = (++next_db) % server.dbnum;
                db = server.db+j;
                dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
                        db->dict : db->expires;
                if (dictSize(dict) != 0) 
                    de = dictGetRandomKey(dict);
                    bestkey = dictGetKey(de);
                    bestdbid = j;
                    break;
                
            
        //驱逐选中的键值对
        if (bestkey) 
            db = server.db+bestdbid;
            robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
            propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
            delta = (long long) zmalloc_used_memory();
            if (server.lazyfree_lazy_eviction)
                dbAsyncDelete(db,keyobj);
            else
                dbSyncDelete(db,keyobj);
            delta -= (long long) zmalloc_used_memory();
            mem_freed += delta;
            server.stat_evictedkeys++;
            decrRefCount(keyobj);
            keys_freed++;
            if (slaves) flushSlavesOutputBuffers();
        
 
    
    return C_OK;
cant_free://进行内存空间的惰性释放
    while(bioPendingJobsOfType(BIO_LAZY_FREE)) 
        if (((mem_reported - zmalloc_used_memory()) + mem_freed) >= mem_tofree)
            break;
        usleep(1000);
    
    return C_ERR;

根据淘汰机制从随机选取的键值对中选取键值对构建evictionPool

  • 1)LRU数据淘汰机制:在数据集中随机选取几个键值对,选择lru最大的一部分键值对构建evictionPool。

LRU的本质是淘汰最久没被访问的数据,有种实现方式是用链表的方式实现,如果数据被访问了就把它移到链表头部,那么链尾一定是最久未访问的数据,但是单链表的查询时间复杂度是O(n),所以一般会用hash表来加快查询数据,比如Java中LinkedHashMap就是这么实现的。但Redis并没有采用这种策略,Redis就是单纯记录了每个Key最近一次的访问时间戳,通过时间戳排序的方式来选找出最早的数据,当然如果把所有的数据都排序一遍,未免也太慢了,所以Redis是每次选一批数据,然后从这批数据执行淘汰策略。这样的好处就是性能高,坏处就是不一定是全局最优,只是达到局部最优。

在redisObject中有个24位的lru字段,这24位保存了数据访问的时间戳(秒),当然24位无法保存完整的unix时间戳,不到200天就会有一个轮回,当然这已经足够了。

robj *lookupKey(redisDb *db, robj *key, int flags) 
    dictEntry *de = dictFind(db->dict,key->ptr);
 

以上是关于Redis深度专题「源码分析系列」从本质分析你写入Redis中的数据为什么不见了?的主要内容,如果未能解决你的问题,请参考以下文章

Redis技术专题「高可用技术基础」一同分析一下Redis高可用的“基石”之主从架构的本质原理解析

Java技术专题「源码分析系列」深入分析JDK动态代理的分析原理机制

SpringCloud技术专题「Eureka源码分析」从源码层面让你认识Eureka工作流程和运作机制(下)

Redis技术专题系列之核心数据结构特性介绍和案例分析

SpringCloud技术专题「Eureka源码分析」从源码层面让你认识Eureka工作流程和运作机制(上)

Redis实战专题「技术提升系列」彻底分析探究Redission实现分布式锁的点点滴滴