[Python从零到壹] 五十八.图像增强及运算篇之图像锐化SobelLaplacian算子实现边缘检测
Posted Eastmount
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[Python从零到壹] 五十八.图像增强及运算篇之图像锐化SobelLaplacian算子实现边缘检测相关的知识,希望对你有一定的参考价值。
欢迎大家来到“Python从零到壹”,在这里我将分享约200篇Python系列文章,带大家一起去学习和玩耍,看看Python这个有趣的世界。所有文章都将结合案例、代码和作者的经验讲解,真心想把自己近十年的编程经验分享给大家,希望对您有所帮助,文章中不足之处也请海涵。Python系列整体框架包括基础语法10篇、网络爬虫30篇、可视化分析10篇、机器学习20篇、大数据分析20篇、图像识别30篇、人工智能40篇、Python安全20篇、其他技巧10篇。您的关注、点赞和转发就是对秀璋最大的支持,知识无价人有情,希望我们都能在人生路上开心快乐、共同成长。
该系列文章主要讲解Python OpenCV图像处理和图像识别知识,前期主要讲解图像处理基础知识、OpenCV基础用法、常用图像绘制方法、图像几何变换等,中期讲解图像处理的各种运算,包括图像点运算、形态学处理、图像锐化、图像增强、图像平滑等,后期研究图像识别、图像分割、图像分类、图像特效处理以及图像处理相关应用。
第二部分将讲解图像运算和图像增强,上一篇文章介绍图像锐化的Roberts算子和Prewitt算子。这篇文章将继续讲解图像锐化知识。在图像收集和传输过程中,可能会受一些外界因素造成图像模糊和有噪声的情况,从而影响到后续的图像处理和识别。此时可以通过图像锐化和边缘检测,加强原图像的高频部分,锐化突出图像的边缘细节,改善图像的对比度,使模糊的图像变得更清晰。图像锐化和边缘检测主要包括一阶微分锐化和二阶微分锐化,本文主要讲解常见的图像锐化和边缘检测方法,即Sobel算子和Laplacian算子。希望文章对您有所帮助,如果有不足之处,还请海涵。
文章目录
下载地址:记得点赞喔 O(∩_∩)O
- https://github.com/eastmountyxz/Python-zero2one
- 开源600多页电子书:https://github.com/eastmountyxz/HWCloudImageRecognition
前文赏析:(尽管该部分占大量篇幅,但我舍不得删除,哈哈!)
第一部分 基础语法
- [Python从零到壹] 一.为什么我们要学Python及基础语法详解
- [Python从零到壹] 二.语法基础之条件语句、循环语句和函数
- [Python从零到壹] 三.语法基础之文件操作、CSV文件读写及面向对象
第二部分 网络爬虫
- [Python从零到壹] 四.网络爬虫之入门基础及正则表达式抓取博客案例
- [Python从零到壹] 五.网络爬虫之BeautifulSoup基础语法万字详解
- [Python从零到壹] 六.网络爬虫之BeautifulSoup爬取豆瓣TOP250电影详解
- [Python从零到壹] 七.网络爬虫之Requests爬取豆瓣电影TOP250及CSV存储
- [Python从零到壹] 八.数据库之MySQL基础知识及操作万字详解
- [Python从零到壹] 九.网络爬虫之Selenium基础技术万字详解(定位元素、常用方法、键盘鼠标操作)
- [Python从零到壹] 十.网络爬虫之Selenium爬取在线百科知识万字详解(NLP语料构造必备技能)
第三部分 数据分析和机器学习
- [Python从零到壹] 十一.数据分析之Numpy、Pandas、Matplotlib和Sklearn入门知识万字详解(1)
- [Python从零到壹] 十二.机器学习之回归分析万字总结全网首发(线性回归、多项式回归、逻辑回归)
- [Python从零到壹] 十三.机器学习之聚类分析万字总结全网首发(K-Means、BIRCH、层次聚类、树状聚类)
- [Python从零到壹] 十四.机器学习之分类算法三万字总结全网首发(决策树、KNN、SVM、分类算法对比)
- [Python从零到壹] 十五.文本挖掘之数据预处理、Jieba工具和文本聚类万字详解
- [Python从零到壹] 十六.文本挖掘之词云热点与LDA主题分布分析万字详解
- [Python从零到壹] 十七.可视化分析之Matplotlib、Pandas、Echarts入门万字详解
- [Python从零到壹] 十八.可视化分析之Basemap地图包入门详解
- [Python从零到壹] 十九.可视化分析之热力图和箱图绘制及应用详解
- [Python从零到壹] 二十.可视化分析之Seaborn绘图万字详解
- [Python从零到壹] 二十一.可视化分析之Pyechart绘图万字详解
- [Python从零到壹] 二十二.可视化分析之OpenGL绘图万字详解
- [Python从零到壹] 二十三.十大机器学习算法之决策树分类分析详解(1)
- [Python从零到壹] 二十四.十大机器学习算法之KMeans聚类分析详解(2)
- [Python从零到壹] 二十五.十大机器学习算法之KNN算法及图像分类详解(3)
- [Python从零到壹] 二十六.十大机器学习算法之朴素贝叶斯算法及文本分类详解(4)
- [Python从零到壹] 二十七.十大机器学习算法之线性回归算法分析详解(5)
- [Python从零到壹] 二十八.十大机器学习算法之SVM算法分析详解(6)
- [Python从零到壹] 二十九.十大机器学习算法之随机森林算法分析详解(7)
- [Python从零到壹] 三十.十大机器学习算法之逻辑回归算法及恶意请求检测应用详解(8)
- [Python从零到壹] 三十一.十大机器学习算法之Boosting和AdaBoost应用详解(9)
- [Python从零到壹] 三十二.十大机器学习算法之层次聚类和树状图聚类应用详解(10)
第四部分 Python图像处理基础
- [Python从零到壹] 三十三.图像处理基础篇之什么是图像处理和OpenCV配置
- [Python从零到壹] 三十四.OpenCV入门详解——显示读取修改及保存图像
- [Python从零到壹] 三十五.图像处理基础篇之OpenCV绘制各类几何图形
- [Python从零到壹] 三十六.图像处理基础篇之图像算术与逻辑运算详解
- [Python从零到壹] 三十七.图像处理基础篇之图像融合处理和ROI区域绘制
- [Python从零到壹] 三十八.图像处理基础篇之图像几何变换(平移缩放旋转)
- [Python从零到壹] 三十九.图像处理基础篇之图像几何变换(镜像仿射透视)
- [Python从零到壹] 四十.图像处理基础篇之图像量化处理
- [Python从零到壹] 四十一.图像处理基础篇之图像采样处理
- [Python从零到壹] 四十二.图像处理基础篇之图像金字塔向上取样和向下取样
第五部分 Python图像运算和图像增强
- [Python从零到壹] 四十三.图像增强及运算篇之图像点运算和图像灰度化处理
- [Python从零到壹] 四十四.图像增强及运算篇之图像灰度线性变换详解
- [Python从零到壹] 四十五.图像增强及运算篇之图像灰度非线性变换详解
- [Python从零到壹] 四十六.图像增强及运算篇之图像阈值化处理
- [Python从零到壹] 四十七.图像增强及运算篇之腐蚀和膨胀详解
- [Python从零到壹] 四十八.图像增强及运算篇之形态学开运算、闭运算和梯度运算
- [Python从零到壹] 四十九.图像增强及运算篇之顶帽运算和底帽运算
- [Python从零到壹] 五十.图像增强及运算篇之图像直方图理论知识和绘制实现
- [Python从零到壹] 五十一.图像增强及运算篇之图像灰度直方图对比分析万字详解
- [Python从零到壹] 五十二.图像增强及运算篇之图像掩膜直方图和HS直方图
- [Python从零到壹] 五十三.图像增强及运算篇之直方图均衡化处理
- [Python从零到壹] 五十四.图像增强及运算篇之局部直方图均衡化和自动色彩均衡化处理
- [Python从零到壹] 五十五.图像增强及运算篇之图像平滑(均值滤波、方框滤波、高斯滤波)
- [Python从零到壹] 五十六.图像增强及运算篇之图像平滑(中值滤波、双边滤波)
- [Python从零到壹] 五十七.图像增强及运算篇之图像锐化Roberts、Prewitt算子实现边缘检测
- [Python从零到壹] 五十八.图像增强及运算篇之图像锐化Sobel、Laplacian算子实现边缘检测
第六部分 Python图像识别和图像高阶案例
第七部分 NLP与文本挖掘
第八部分 人工智能入门知识
第九部分 网络攻防与AI安全
第十部分 知识图谱构建实战
扩展部分 人工智能高级案例
作者新开的“娜璋AI安全之家”将专注于Python和安全技术,主要分享Web渗透、系统安全、人工智能、大数据分析、图像识别、恶意代码检测、CVE复现、威胁情报分析等文章。虽然作者是一名技术小白,但会保证每一篇文章都会很用心地撰写,希望这些基础性文章对你有所帮助,在Python和安全路上与大家一起进步。
一.Sobel算子
Sobel算子是一种用于边缘检测的离散微分算子,它结合了高斯平滑和微分求导。该算子用于计算图像明暗程度近似值,根据图像边缘旁边明暗程度把该区域内超过某个数的特定点记为边缘。Sobel算子在Prewitt算子的基础上增加了权重的概念,认为相邻点的距离远近对当前像素点的影响是不同的,距离越近的像素点对应当前像素的影响越大,从而实现图像锐化并突出边缘轮廓[1-4]。
Sobel算子的边缘定位更准确,常用于噪声较多、灰度渐变的图像。其算法模板如公式(1)所示,其中dx表示水平方向,dy表示垂直方向[3]。
其像素计算公式如下:
Sobel算子像素的最终计算公式如下:
Sobel算子根据像素点上下、左右邻点灰度加权差,在边缘处达到极值这一现象检测边缘。对噪声具有平滑作用,提供较为精确的边缘方向信息。因为Sobel算子结合了高斯平滑和微分求导(分化),因此结果会具有更多的抗噪性,当对精度要求不是很高时,Sobel算子是一种较为常用的边缘检测方法。
Python和OpenCV将Sobel算子封装在Sobel()函数中,其函数原型如下所示:
- dst = Sobel(src, ddepth, dx, dy[, dst[, ksize[, scale[, delta[, borderType]]]]])
– src表示输入图像
– dst表示输出的边缘图,其大小和通道数与输入图像相同
– ddepth表示目标图像所需的深度,针对不同的输入图像,输出目标图像有不同的深度
– dx表示x方向上的差分阶数,取值1或 0
– dy表示y方向上的差分阶数,取值1或0
– ksize表示Sobel算子的大小,其值必须是正数和奇数
– scale表示缩放导数的比例常数,默认情况下没有伸缩系数
– delta表示将结果存入目标图像之前,添加到结果中的可选增量值
– borderType表示边框模式,更多详细信息查阅BorderTypes
注意,在进行Sobel算子处理之后,还需要调用convertScaleAbs()函数计算绝对值,并将图像转换为8位图进行显示。其算法原型如下:
- dst = convertScaleAbs(src[, dst[, alpha[, beta]]])
– src表示原数组
– dst表示输出数组,深度为8位
– alpha表示比例因子
– beta表示原数组元素按比例缩放后添加的值
Sobel算子的实现代码如下所示。
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图像
img = cv2.imread('luo.png')
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#Sobel算子
x = cv2.Sobel(grayImage, cv2.CV_16S, 1, 0) #对x求一阶导
y = cv2.Sobel(grayImage, cv2.CV_16S, 0, 1) #对y求一阶导
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
#显示图形
titles = ['原始图像', 'Sobel算子']
images = [lenna_img, Sobel]
for i in range(2):
plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
其运行结果如图1所示:
二.Laplacian算子
拉普拉斯(Laplacian)算子是n维欧几里德空间中的一个二阶微分算子,常用于图像增强领域和边缘提取。它通过灰度差分计算邻域内的像素,基本流程是:
- 判断图像中心像素灰度值与它周围其他像素的灰度值;
- 如果中心像素的灰度更高,则提升中心像素的灰度;
- 反之降低中心像素的灰度,从而实现图像锐化操作。
在算法实现过程中,Laplacian算子通过对邻域中心像素的四方向或八方向求梯度,再将梯度相加起来判断中心像素灰度与邻域内其他像素灰度的关系,最后通过梯度运算的结果对像素灰度进行调整[2]。
一个连续的二元函数f(x,y),其拉普拉斯运算定义为:
Laplacian算子分为四邻域和八邻域,四邻域是对邻域中心像素的四方向求梯度,八邻域是对八方向求梯度。其中,四邻域模板如公式(5)所示:
其像素的计算公式可以简化为:
通过模板可以发现,当邻域内像素灰度相同时,模板的卷积运算结果为0;当中心像素灰度高于邻域内其他像素的平均灰度时,模板的卷积运算结果为正数;当中心像素的灰度低于邻域内其他像素的平均灰度时,模板的卷积为负数。对卷积运算的结果用适当的衰弱因子处理并加在原中心像素上,就可以实现图像的锐化处理。
Laplacian算子的八邻域模板如下:
其像素的计算公式可以简化为:
Python和OpenCV将Laplacian算子封装在Laplacian()函数中,其函数原型如下所示:
- dst = Laplacian(src, ddepth[, dst[, ksize[, scale[, delta[, borderType]]]]])
– src表示输入图像
– dst表示输出的边缘图,其大小和通道数与输入图像相同
– ddepth表示目标图像所需的深度
– ksize表示用于计算二阶导数的滤波器的孔径大小,其值必须是正数和奇数,且默认值为1,更多详细信息查阅getDerivKernels
– scale表示计算拉普拉斯算子值的可选比例因子。默认值为1,更多详细信息查阅getDerivKernels
– delta表示将结果存入目标图像之前,添加到结果中的可选增量值,默认值为0
– borderType表示边框模式,更多详细信息查阅BorderTypes
注意,Laplacian算子其实主要是利用Sobel算子的运算,通过加上Sobel算子运算出的图像x方向和y方向上的导数,得到输入图像的图像锐化结果。
同时,在进行Laplacian算子处理之后,还需要调用convertScaleAbs()函数计算绝对值,并将图像转换为8位图进行显示。其算法原型如下:
- dst = convertScaleAbs(src[, dst[, alpha[, beta]]])
– src表示原数组
– dst表示输出数组,深度为8位
– alpha表示比例因子
– beta表示原数组元素按比例缩放后添加的值
当ksize=1时,Laplacian()函数采用3×3的孔径(四邻域模板)进行变换处理。下面的代码是采用ksize=3的Laplacian算子进行图像锐化处理,其代码如下:
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图像
img = cv2.imread('luo.png')
lenna_img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#拉普拉斯算法
dst = cv2.Laplacian(grayImage, cv2.CV_16S, ksize = 3)
Laplacian = cv2.convertScaleAbs(dst)
#用来正常显示中文标签
plt.rcParams['font.sans-serif']=['SimHei']
#显示图形
titles = ['原始图像', 'Laplacian算子']
images = [lenna_img, Laplacian]
for i in range(2):
plt.subplot(1,2,i+1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
其运行结果如图2所示:
边缘检测算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感,因此需要采用滤波器来过滤噪声,并调用图像增强或阈值化算法进行处理,最后再进行边缘检测。下面是采用高斯滤波去噪和阈值化处理之后,再进行边缘检测的过程,并对比了四种常见的边缘提取算法。
# -*- coding: utf-8 -*-
# By:Eastmount
import cv2
import numpy as np
import matplotlib.pyplot as plt
#读取图像
img = cv2.imread('luo.png')
lenna_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#灰度化处理图像
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#高斯滤波
gaussianBlur = cv2.GaussianBlur(grayImage, (3,3), 0)
#阈值处理
ret, binary = cv2.threshold(gaussianBlur, 127, 255, cv2.THRESH_BINARY)
#Roberts算子
kernelx = np.array([[-1,0],[0,1]], dtype=int)
kernely = np.array([[0,-1],[1,0]], dtype=int)
x = cv2.filter2D(binary, cv2.CV_16S, kernelx)
y = cv2.filter2D(binary, cv2.CV_16S, kernely)
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Roberts = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
#Prewitt算子
kernelx = np.array([[1,1,1],[0,0,0],[-1,-1,-1]], dtype=int)
kernely = np.array([[-1,0,1],[-1,0,1],[-1,0,1]], dtype=int)
x = cv2.filter2D(binary, cv2.CV_16S, kernelx)
y = cv2.filter2D(binary, cv2.CV_16S, kernely)
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Prewitt = cv2.addWeighted(absX,0.5,absY,0.5,0)
#Sobel算子
x = cv2.Sobel(binary, cv2.CV_16S, 1, 0)
y = cv2.Sobel(binary, cv2.CV_16S, 0, 1)
absX = cv2.convertScaleAbs(x)
absY = cv2.convertScaleAbs(y)
Sobel = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
#拉普拉斯算法
dst = cv2.Laplacian(binary, cv2.CV_16S, ksize = 3)
Laplacian = cv2.convertScaleAbs(dst)
#效果图
titles = ['Source Image', 'Binary Image', 'Roberts Image',
'Prewitt Image','Sobel Image', 'Laplacian Image']
images = [lenna_img, binary, Roberts, Prewitt, Sobel, Laplacian]
for i in np.arange(6):
plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
输出结果如图3所示。其中,Laplacian算子对噪声比较敏感,由于其算法可能会出现双像素边界,常用来判断边缘像素位于图像的明区或暗区,很少用于边缘检测;Robert算子对陡峭的低噪声图像效果较好,尤其是边缘正负45度较多的图像,但定位准确率较差;Prewitt算子对灰度渐变的图像边缘提取效果较好,而没有考虑相邻点的距离远近对当前像素点的影响;Sobel算子考虑了综合因素,对噪声较多的图像处理效果更好。
三.总结
本文主要介绍图像锐化和边缘检测知识,详细讲解了Sobel算子和Laplacian算子,并通过小珞珞图像进行边缘轮廓提取。图像锐化和边缘提取技术可以消除图像中的噪声,提取图像信息中用来表征图像的一些变量,为图像识别提供基础。
感谢在求学路上的同行者,不负遇见,勿忘初心。图像处理系列主要包括三部分,分别是:
2022年即将离去,又是忙碌的一年,感谢女神的鼓励和小珞治愈的笑容。守得云开见明月,加油!读博四年,还是写了一些东西,从初入安全的无知到现在的懵懂,也记录一些笔记,也希望对大家有所帮助。思过崖一周难忘的经历,心情五味陈杂,忙忙碌碌,期间还赶了论文修改的DDL前晚收到家人的生日祝福很开心,一句话就很温暖。回想那晚带上了他俩的照片,亲情永远那么美好。希望小珞珞永远开心,全家人平平安安,身体健康,爱你们喔!2022年最重要的事活着,希望大家都好。
(By:Eastmount 2022-12-16 夜于武汉 http://blog.csdn.net/eastmount/ )
参考文献:
- [1] 冈萨雷斯著,阮秋琦译. 数字图像处理(第3版)[M]. 北京:电子工业出版社,2013.
- [2] 阮秋琦. 数字图像处理学(第3版)[M]. 北京:电子工业出版社,2008.
- [3] 杨秀璋,于小民,范郁锋,李娜. 基于苗族服饰的图像锐化和边缘提取技术研究[J]. 现代计算机,2018-10.
- [4] Eastmount. [Python图像处理] 四.图像平滑之均值滤波、方框滤波、高斯滤波及中值滤波[EB/OL]. (2018-09-02). https://blog.csdn.net/Eastmount/article/details/82216380.
- [5] Eastmount. [数字图像处理] 七.MFC图像增强之图像普通平滑、高斯平滑、Laplacian、Sobel、Prewitt锐化详解[EB/OL]. (2015-06-08). https://blog.csdn.net/eastmount/article/ details/46378783.
- [6] DSQiu. 图像锐化(增强)和边缘检测[EB/OL]. (2012-08-20). https://dsqiu.iteye.com/blog/1638589.https://blog.csdn.net/poem_qianmo/article/details/23184547.
- [7] C. Tomasi, R Manduchi. Bilateral Filtering for Gray and Color images[C]. Proceedings of the IEEE International Conference on Computer Vision, Bombay, India. 1998:839-846.
以上是关于[Python从零到壹] 五十八.图像增强及运算篇之图像锐化SobelLaplacian算子实现边缘检测的主要内容,如果未能解决你的问题,请参考以下文章
[Python从零到壹] 五十六.图像增强及运算篇之图像平滑(中值滤波双边滤波)
[Python从零到壹] 五十九.图像增强及运算篇之图像锐化ScharrCannyLOG实现边缘检测
[Python从零到壹] 五十.图像增强及运算篇之图像直方图理论知识和绘制实现
[Python从零到壹] 五十.图像增强及运算篇之图像直方图理论知识和绘制实现