[激光原理与应用-56]:激光器 - 温度控制 - PID算法的参数调整

Posted 文火冰糖的硅基工坊

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[激光原理与应用-56]:激光器 - 温度控制 - PID算法的参数调整相关的知识,希望对你有一定的参考价值。

目录

前言:

第1章 PID算法概述

第2章 PID控制原理

2.1 比例

2.2 积分

2.3 微分

第3章 PID参数调节

它山之石:简单易懂的视频讲解


前言:

PID在工业控制中得到的广泛的应用,在激光器中,PID算法晶体的温度控制、LD驱动的电流控制等控制也得到了广泛的应用。

通常情况下,温度控制器的PID参数都是确定性的,然后,不同的控制对象,所需要的PID的控制参数有可能不同,比如50°和150°的控制对象,他们所需要的PID参数就可能不同 。本文就是探讨PID算法以及PID参数调整

第1章 PID算法概述

PID即:Proportional(比例)、Integral(积分)、Differential(微分)的缩写。

顾名思义,PID控制算法是结合比例、积分和微分三种环节于一体的控制算法。

它是连续系统中技术最为成熟、应用最为广泛的一种控制算法,该控制算法出现于20世纪30至40年代,适用于对被控对象模型了解不清楚的场合。实际运行的经验和理论的分析都表明,运用这种控制规律对许多工业过程进行控制时,都能得到比较满意的效果。PID控制的实质就是根据输入的偏差值,按照比例、积分、微分的函数关系进行运算,运算结果用以控制输出。

第2章 PID控制原理

闭环控制是根据控制对象输出反馈来进行校正的控制方式,它是在测量出实际与计划发生偏差时,按定额或标准来进行纠正的。比如控制一个电机的转速,就得有一个测量转速的传感器,并将结果反馈到控制路线上。提到闭环控制算法,不得不提PID,它是闭环控制算法中最简单的一种。PID是比例 (Proportion) 积分 ,(Integral) 微分 ,(Differential coefficient) 的缩写,分别代表了三种控制算法。通过这三个算法的组合可有效地纠正被控制对象的偏差,从而使其达到一个稳定的状态。

2.1 比例

成比例地反映控制系统的偏差信号,偏差一旦产生,立即产生控制作用以减小偏差。比例控制器的输出u(t)与输入偏差e(t)成正比,能迅速反映偏差,从而减小偏差,但不能消除静差。静差是指系统控制过程趋于稳定时,给定值与输出量的实测值之差。偏差存在,才能使控制器维持一定的控制量输出,因此比例控制器必然存在着静差。由偏差理论知,增大虽然可以减小偏差,但不能彻底消除偏差。比例控制作用的大小除与偏差e(t)有关之外,还取决于比例系数Kp的大小。比例系数Kp越小,控制作用越小,系统响应越慢;反之,比例系数Kp越大,控制作用也越强,则系统响应越快。但是,Kp过大会使系统产生较大的超调和振荡,导致系统的稳定性能变差。因此,不能将Kp选取过大,应根据被控对象的特性来折中选取Kp,使系统的静差控制在允许的范围内,同时又具有较快的响应速度。

2.2 积分

积分环节的作用,主要用于消除静差提高系统的无差度。积分作用的强弱,取决于积分时间常数Ti,Ti越大积分作用越弱,反之则越强。积分控制作用的存在与偏差e(t)的存在时间有关,只要系统存在着偏差,积分环节就会不断起作用,对输入偏差进行积分,使控制器的输出及执行器的开度不断变化,产生控制作用以减小偏差。在积分时间足够的情况下,可以完全消除静差,这时积分控制作用将维持不变。Ti越小,积分速度越快,积分作用越强。积分作用太强会使系统超调加大,甚至使系统出现振荡。

2.3 微分

微分环节的作用能反映偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。积分控制作用的引入虽然可以消除静差,但是降低了系统的响应速度,特别是对于具有较大惯性的被控对象,用PI控制器很难得到很好的动态调节品质,系统会产生较大的超调和振荡,这时可以引入微分作用。在偏差刚出现或变化的瞬间,不仅根据偏差量作出及时反应(即比例控制作用),还可以根据偏差量的变化趋势(速度)提前给出较大的控制作用(即微分控制作用),将偏差消灭在萌芽状态,这样可以大大减小系统的动态偏差和调节时间,使系统的动态调节品质得以改善。微分环节有助于系统减小超调,克服振荡,加快系统的响应速度,减小调节时间,从而改善了系统的动态性能,但微分时间常数过大,会使系统出现不稳定。微分控制作用一个很大的缺陷是容易引入高频噪声,所以在干扰信号比较严重的流量控制系统中不宜引入微分控制作用。 [4] 

微分控制作用的阶跃响应特性对于一个恒定的偏差量,不管其数值有多大,微分控制作用均为零。因此,微分作用不能消除静差,单独使用意义不大,一般需要与比例、积分控制作用配合使用,构成PD或PID控制。 

对于PID控制,在控制偏差输入为阶跃信号时,立即产生比例和微分控制中作用。由于在偏差输入的瞬时,变化率非常大,微分控制作用很强,此后微分控制作用迅速衰减,但积分作用越来越大,直至最终消除静差。PID控制综合了比例、积分、微分3种作用,既能加快系统响应速度、减小振荡、克服超调,亦能有效消除静差,系统的静态和动态品质得到很大改善,因而PID控制器在工业控制中得到了最为广泛的应用。

第3章 PID参数调节

在整定PID控制器参数时,可以根据控制器的参数与系统动态性能和稳态性能之间的定性关系,用实验的方法来调节控制器的参数。有经验的调试人员一般可以较快地得到较为满意的调试结果。在调试中最重要的问题是在系统性能不能令人满意时,知道应该调节哪一个参数,该参数应该增大还是减小。 [4] 

为了减少需要整定的参数,首先可以采用PI控制器。为了保证系统的安全,在调试开始时应设置比较保守的参数,例如比例系数不要太大,积分时间不要太小,以避免出现系统不稳定或超调量过大的异常情况。给出一个阶跃给定信号,根据被控量的输出波形可以获得系统性能的信息,例如超调量和调节时间。应根据PID参数与系统性能的关系,反复调节PID的参数。 [4] 

如果阶跃响应的超调量太大,经过多次振荡才能稳定或者根本不稳定,应减小比例系数、增大积分时间。如果阶跃响应没有超调量,但是被控量上升过于缓慢,过渡过程时间太长,应按相反的方向调整参数。如果消除误差的速度较慢,可以适当减小积分时间,增强积分作用。 [4] 

反复调节比例系数和积分时间,如果超调量仍然较大,可以加入微分控制,微分时间从0逐渐增大,反复调节控制器的比例、积分和微分部分的参数。 [4] 

总之,PID参数的调试是一个综合的、各参数互相影响的过程,实际调试过程中的多次尝试是非常重要的,也是必须的。常用的控制方式:P,PI,PD,PID控制算法。

它山之石:简单易懂的视频讲解-PID参数调整

PID控制原理,看了开头,你就会看到结尾!_哔哩哔哩_bilibili

通俗易懂的 PID 控制算法讲解_哔哩哔哩_bilibili

以上是关于[激光原理与应用-56]:激光器 - 温度控制 - PID算法的参数调整的主要内容,如果未能解决你的问题,请参考以下文章

[激光原理与应用-22]:《激光原理与技术》-8- 控制技术-选模技术:横模纵模

[激光原理与应用-28]:《激光原理与技术》-14- 激光产生技术 - 激光的主要参数与指标

[激光原理与应用-21]:《激光原理与技术》-7- 激光技术大汇总与总体概述

[激光原理与应用-27]:《激光原理与技术》-13- 激光产生技术 - 激光稳频技术

[激光器原理与应用-9]: 开关电源主要指标

[激光原理与应用-61]:激光器 - 种子源 - 1064nm皮秒种子源参数解读