CV秋季划生成对抗网络GAN有哪些研究和应用,如何循序渐进地学习好(2022年言有三一对一辅导)?...

Posted 言有三

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CV秋季划生成对抗网络GAN有哪些研究和应用,如何循序渐进地学习好(2022年言有三一对一辅导)?...相关的知识,希望对你有一定的参考价值。

GAN自从被提出来后,技术发展就非常迅猛,已经被落地于众多的方向,其应用涉及图像与视频生成,数据仿真与增强,各种各样的图像风格化任务,人脸与人体图像编辑,图像质量提升。

那我们究竟如何去长期学好相关的算法呢?有三AI推出了CV秋季划-GAN组,供长期学习相关内容,学习不限时长,永久有效,大家可以先阅读以下视频了解:

整个学习内容

GAN小组需要学习的东西包括:GAN的基础理论,图像与视频生成,图像翻译与风格迁移,图像增强,图像编辑等方向。下面来看看给大家配置的已有学习资料(未更新完毕,仍然会继续更新):

1、《深度生成模型GAN:理论基础篇》专栏

这一部分主要是学习对GAN的基础理论的理解以及评估,包括:

(1) 生成模型基础

(2) 自编码器与变分自编码器

(3) GAN的原理

(4) GAN的优化

(5) GAN的评估

本部分内容学习资料包括视频与图文,已有内容大纲如下:

更加详细的内容介绍请阅读:【视频课】永久免费课程!如何掌握好深度生成模型与GAN的基础理论知识

2、《深度学习之图像生成GAN:理论与实践篇》专栏

这一部分主要是学习图像生成和视频生成技术,这是GAN最为人熟知的应用,包括:

(1) 图像生成技术的基本原理

(2) 视频生成技术的基本原理

(3) 如何提高生成图像和视频的质量

(4) 如何使用GAN提高已有数据的质量

本部分内容学习资料包括视频讲解与实践内容,已有内容大纲如下:

(1) 理论部分内容:详细解读了基本的全卷积GAN,各类条件生成GAN,强大的StyleGAN系列,数据增强与仿真GAN,后续还会增加3D与视频的部分内容,既有足够的宽度,也具备有足够的深度。

(2) 实践部分内容:本次课程中一共已经包含了2个Pytorch实战案例,分别为DCGAN人脸嘴唇表情生成任务,StyleGAN人脸图像生成任务,后续还会增加3D与视频部分的实践内容。

更加详细的内容介绍请阅读:【视频课】CV必学,超6小时,2大模块,循序渐进地搞懂GAN图像生成!

3、《深度学习之图像翻译GAN:理论与实践篇》专栏

这一部分主要是学习图像翻译与风格化GAN相关的内容,包括:

(1) 有监督图像翻译GAN

(2) 无监督图像翻译GAN

(3) 多域图像翻译GAN

(4) 交互式图像翻译GAN

本部分内容学习资料包括视频讲解与实践内容,已有内容大纲如下:

(1) 理论部分内容:涵盖了深度学习之图像翻译的核心方向,如有监督图像翻译模型,无监督图像翻译模型,多域图像翻译模型。我们会非常详细地讲解算法中的细节,帮助彻底消化算法原理;并且后续还会有更多模型的更新。

(2) 实践部分内容:本次课程中一共已经包含了3个实践案例,分别为基于Pix2Pix的黑白图像上色实战,基于StarGAN的人脸表情编辑实战,基于BeautyGAN的人脸美妆实战,后续还会增加其他方向的实战:

更加详细的内容介绍,请阅读:【视频课】CV必学,超7小时,3大模块,3大案例,掌握图像翻译与风格化GAN核心技术!

4、《深度学习之图像增强GAN:理论与实践篇》专栏

这一部分主要是学习图像增强GAN相关的内容,包括:

(1) 图像降噪GAN

(2) 图像色调映射GAN

(3) 图像去模糊GAN

(4) 图像超分辨GAN

(4) 图像修复GAN

本部分内容学习资料包括视频讲解与实践内容,已有内容大纲如下:

(1) 理论部分内容:涵盖了深度学习之图像增强GAN的核心方向,包括图像降噪、图像去模糊、图像超分辨、图像色调映射、图像修复。我们会非常详细地讲解算法中的细节,帮助彻底消化算法原理;并且后续还会有更多模型的更新。

(2) 实践部分内容:本次课程中一共已经包含了3个实践案例,分别为基于SRGAN的图像超分辨实战,基于EnlightenGAN的图像增强实战,基于DANet的图像降噪实战,后续还会增加其他方向的实战:

更加详细的内容介绍,请阅读:【视频课】超8小时,5大模块,掌握基于GAN的图像增强应用(降噪色调映射去模糊超分辨修复)

5、《深度学习之人脸属性编辑:理论与实践篇》专栏

这一部分主要是学习图像增强GAN相关的内容,包括:

(1) 人脸表情编辑GAN

(2) 人脸年龄编辑GAN

(3) 人脸姿态编辑GAN

(4) 人脸妆造编辑GAN

本部分内容学习资料包括视频讲解与实践内容,已有内容大纲如下:

(1) 理论部分内容:涵盖了深度学习之人脸属性编辑的核心方向,包括基于StyleGAN模型的通用人脸属性编辑,基于图像翻译模型的通用人脸属性编辑,以及各类专用的人脸属性编辑模型,包括人脸表情、年龄、姿态、妆造等。我们会非常详细地讲解算法中的细节,帮助彻底消化算法原理;并且后续还会有更多模型的更新。

(2) 实践部分内容:本次课程中一共已经包含了3个实践案例,分别为基于StyleGAN的通用人脸属性编辑实战,基于StarGAN的人脸表情编辑实战,基于BeautyGAN的人脸妆造编辑实战,后续还会增加其他方向的实战:

更加详细的内容介绍,请阅读:【视频课】超10小时,3大模块,掌握深度学习人脸属性编辑算法理论与实践

6、GAN相关的实战专栏

今年我们开始重点开发项目实战类课程,其中尤其是GAN相关的实战类课程居多,秋季划GAN组可以享受所有有三本人制作的GAN实战类课程,目前已有的包括如下:

DCGAN人脸嘴部表情图像生成实战,详情请阅读:【项目实战课】基于Pytorch的DCGAN人脸嘴部表情图像生成实战

StyleGAN人脸图像生成实战,详情请阅读:【项目实战课】基于Pytorch的StyleGAN v1人脸图像生成实战

基于SRGAN的图像超分辨实战,详情请阅读:【项目实战课】基于Pytorch的SRGAN图像超分辨实战

基于Pix2Pix的黑白图像上色实战,详情请阅读:【项目实战课】基于Pytorch的Pix2Pix黑白图片上色实战

基于BeautyGAN人脸智能美妆实战,详情请阅读:【项目实战课】基于Pytorch的BeautyGAN人脸智能美妆实战

基于UGATIT的人脸动漫风格化实战,详情请阅读:【项目实战课】基于Pytorch的UGATIT人脸动漫风格化实战

基于StyleGAN的人脸属性(表情、年龄、性别)编辑实战,详情请阅读:【项目实战课】基于Pytorch的StyleGAN人脸属性(表情、年龄、性别)编辑实战

基于EnlightenGAN的图像增强实战,详情请阅读:【项目实战课】基于Pytorch的EnlightenGAN自然图像增强实战

基于DANet的图像降噪实战,详情请阅读:【项目实战课】基于Pytorch的DANet自然图像降噪实战

后面新增的GAN相关的实战课程专栏,也会给GAN组免费配置。

7、赠送的基础课程专栏

考虑到有些同学的基础不够扎实,因此我们给所有GAN组成员都额外赠送了两套基础专栏,分别是《深度学习之图像分类:理论实践篇》,《深度学习之模型设计:理论实践篇》。

图像分类专栏包括图像分类的各个领域的算法与实践,时长超过10个小时,分为3大模块,5个实践案例。包括图像分类的理论知识和实践内容,内容详细,案例丰富,下面是当前课程的大纲脑图:

(1) 理论部分内容:涵盖了深度学习图像分类各个方向的理论知识,如图像分类基础、多类别图像分类理论、细粒度图像分类理论、多标签图像分类理论、半监督与无监督图像分类、零样本图像分类等,既有足够的广度,也具备足够的深度。我们会非常详细地讲解理论中的细节知识,帮助大家学懂学会;

(2) 实践部分内容:本次课程中一共已经包含了5个实践案例,分别为从零完成人脸表情识别案例实践、简单图像分类数据增强实战、鸟类动物细粒度分类实战、生活用品多标签图像分类实战、基于血红细胞的图像分类竞赛技巧,通过这些实战案例可以彻底掌握图像分类任务的实战技巧。

完整的介绍请阅读:【视频课】CV必学,超10小时,3大模块,5大案例,循序渐进地搞懂图像分类理论与实践!

模型设计专栏包括经典的CNN模型设计算法与实践,总共时长超过20个小时,分为4大模块,4个实践案例内容详细,案例丰富。在课程中老师会使用通俗易懂的语言帮助大家理解涉及的知识点、原理及代码,下面是当前课程的大纲脑图:

理论部分内容:涵盖了绝大多数经典CNN模型设计,包括基于网络深度的模型、基于网络宽度的模型、注意力机制模型、轻量化模型等内容。

实践部分内容:涵盖了一些非常经典的模型实战,包括基于ResNet的网络深度设计分析及实战,基于InceptionNet的网络宽度设计分析及实战,基于SeNet的人种分类实战,基于Pytorch的安卓端模型部署。

完整的介绍请阅读:【视频课】AI必学,超20小时,4大模块,循序渐进地搞懂经典模型设计与简单部署!

其他学习资料

除了以上学习资料,GAN组还包括一系列其他资料。

1、知识星球社区:包括两个,一个是专用于秋季划GAN学习小组存储资料的星球,永久有效,不对外开放。另一个是对外开放的有三AI知识星球,1年有效,不对外开放,大家可以自行阅读下文了解。

有三AI知识星球的介绍可以参考:【重要】有三AI知识星球不再对外公开!还想加入的有哪些途径?

其中GAN相关的内容非常多,包括各类经典GAN模型的讲解,下面是一个简单的汇总,大家可以参考,提供相关的论文下载和解读。

2、配套参考教材一本,《生成对抗网络GAN:理论与实践》。

书籍介绍可以参考:言有三新书来袭,全面系统性地讲解生成对抗网络GAN原理与实践

(3) 有三AI内容组,项目组,运营组:是学习后下一步从业的真正目标。在内容组大家可以从事内容创作和教学相关的工作,获得收入。在项目组大家可以参与各类工程项目,获得收入。在运营组大家可以参与生态运营,获得收入。

一些已有成员的分享,大家可以参考:

【杂谈】有三AI季划的最核心价值在哪,听听这些同学怎么说!

【杂谈】我在有三AI从学生到老师

【杂谈】从学员到开发者,我在有三AI打怪升级

【杂谈】从学员到参与书籍写作,我在有三AI学习与成长的故事

【杂谈】从学员到专栏作者、讲师,我在有三AI学习与名利双收的故事

【杂谈】从学生到讲师,我如何20天里在有三AI赚3万

【杂谈】从失业到重要项目负责人,2020年里我如何在有三AI上岸

【杂谈】参加有三AI秋季划4个月,薪资翻倍,我在有三AI都学了啥?

【杂谈】一个五岁孩子妈妈在有三AI学习并且赚钱的故事 

【杂谈】有三AI-CV春季划有用吗,听听他们的分享

【杂谈】从医学专业转行到AI,独立完成项目到获得加州理工大学读研推荐,我如何与有三AI结缘

(4) 线上线下答疑:包括有三的微信答疑和组织的线下活动和私人线下答疑。

如何参加GAN组

扫码下面的海报,即可订阅,订阅完成后请联系有三微信Longlongtogo,获得赠书,知识星球,以及答疑群等权限。如果已经拥有以上配置的课程,书籍,知识星球,可以相应抵扣原值。

PS:有三AI- CV夏季划成员,参加GAN组可享半价优惠,联系有三本人即可。

关于季划相关的问题,请直接联系有三微信Longlongtogo。

往期相关

以上是关于CV秋季划生成对抗网络GAN有哪些研究和应用,如何循序渐进地学习好(2022年言有三一对一辅导)?...的主要内容,如果未能解决你的问题,请参考以下文章

什么是生成对抗网络?

生成式对抗网络GAN 的研究进展与展望

生成对抗网络GAN综述

生成对抗式网络

最新《生成式对抗网络GAN》综述

最新《生成式对抗网络GAN》综述