[数据结构]Binary_tree | Binary_search_tree | avl_tree
Posted yccy1230
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[数据结构]Binary_tree | Binary_search_tree | avl_tree相关的知识,希望对你有一定的参考价值。
//Record.h
#include<iostream>
using namespace std;
class Record
public:
Record(int x = 0, int y = 0);
int the_key() const;
private:
int key;
int other;
;
bool operator == (const Record &x, const Record &y);
bool operator > (const Record &x, const Record &y);
bool operator < (const Record &x, const Record &y);
ostream & operator << (ostream &output, Record &x);
这个Record是把树的内容打包起来,作为一个类,方便日后对树内容的修改。
//Record.cpp
#include "Record.h"
Record::Record(int x, int y)
key = x;
other = y;
int Record::the_key() const
return key;
bool operator == (const Record &x, const Record &y)
return x.the_key() == y.the_key();
bool operator > (const Record &x, const Record &y)
return x.the_key() > y.the_key();
bool operator < (const Record &x, const Record &y)
return x.the_key() < y.the_key();
ostream & operator << (ostream &output, Record &x)
output << x.the_key();
output << " ";
return output;
//Binary_tree.h
enum Error_code success, not_present, duplicate_error ;
enum Balance_factor left_higher, equal_height, right_higher ;
#include"Record.h"
template<class Entry>
struct Binary_node
Entry data;
Binary_node<Entry> *left_child;
Binary_node<Entry> *right_child;
Binary_node();
Binary_node(const Entry &x);
//Inherit used:
virtual void set_balance(Balance_factor b);<span style="white-space:pre"> </span>//虚函数,因为这个函数在这个父类里没有意义所以设为空函数即可
virtual Balance_factor get_balance() const;<span style="white-space:pre"> </span>//这里的虚函数主要是为了avl_node在继承这个类之后可以通过动态绑定
<span style="white-space:pre"> </span>//直接使用left_child和right_child去调用avl_tree中的一些方法
;
template<class Entry>
inline Binary_node<Entry>::Binary_node()
left_child = nullptr;
right_child = nullptr;
template<class Entry>
inline Binary_node<Entry>::Binary_node(const Entry & x)
data = x;
left_child = nullptr;
right_child = nullptr;
template<class Entry>
inline void Binary_node<Entry>::set_balance(Balance_factor b)
template<class Entry>
inline Balance_factor Binary_node<Entry>::get_balance() const
return equal_height;
template<class Entry>
class Binary_tree
public:
//Basic function:
Binary_tree();
bool empty();
void preorder(void(*visit)(Entry &));
void inorder(void(*visit)(Entry &));
void postorder(void(*visit)(Entry &));
int size() ;
void clear();
int height();
void insert(const Entry &item);
Binary_node<Entry> *Get_root();
//Safety functions:
Binary_tree(const Binary_tree<Entry> &original);
Binary_tree &operator=(const Binary_tree<Entry> &original);
~Binary_tree();
protected:
Binary_node<Entry> *root;
int count;
void recursive_preorder(Binary_node<Entry> *sub_root, void(*visit)(Entry &));
void recursive_inorder(Binary_node<Entry> *sub_root, void(*visit)(Entry &));
void recursive_postorder(Binary_node<Entry> *sub_root,void (*visit)(Entry &));
int recursive_height(Binary_node <Entry> *sub_root);
int recursive_size(Binary_node<Entry> *sub_root);
void recursive_clear(Binary_node <Entry> *sub_root);
void recursive_insert(Binary_node<Entry> *sub_root,Binary_node<Entry> *node);
Binary_node<Entry>* creat(Binary_node<Entry> *sub_root);
;
//Binary_tree.cpp
#include"Binary_tree.h"
#include<iostream>
#include<stack>
using namespace std;
template<class Entry>
Binary_tree<Entry>::Binary_tree()
root = NULL;
count = 0;
template<class Entry>
void Binary_tree<Entry>::recursive_preorder(Binary_node<Entry>* sub_root, void(*visit)(Entry &))
if (sub_root)
(*visit)(sub_root->data);
recursive_preorder(sub_root->left_child, visit);
recursive_preorder(sub_root->right_child, visit);
template<class Entry>
void Binary_tree<Entry>::recursive_inorder(Binary_node<Entry>* sub_root, void(*visit)(Entry &))
if (sub_root)
recursive_inorder(sub_root->left_child,visit);
(*visit)(sub_root->data);
recursive_inorder(sub_root->right_child, visit);
template<class Entry>
void Binary_tree<Entry>::recursive_postorder(Binary_node<Entry>* sub_root, void(*visit)(Entry &))
if (sub_root)
recursive_postorder(sub_root->left_child, visit);
recursive_postorder(sub_root->right_child, visit);
(*visit)(sub_root->data);
template<class Entry>
int Binary_tree<Entry>::recursive_height(Binary_node<Entry>* sub_root)
if (!sub_root)return 0;
int left = recursive_height(sub_root->left_child);
int right = recursive_height(sub_root->right_child);
if (left > right) return (left + 1);
else return (right + 1);
template<class Entry>
int Binary_tree<Entry>::recursive_size(Binary_node<Entry>* sub_root)
if (!sub_root)return 0;
int left = recursive_size(sub_root->left_child);
int right = recursive_size(sub_root->right_child);
return (left + right + 1);
template<class Entry>
void Binary_tree<Entry>::recursive_clear(Binary_node<Entry>* sub_root)
if (sub_root)
recursive_clear(sub_root->left_child);
recursive_clear(sub_root->right_child);
delete sub_root;
template<class Entry>
void Binary_tree<Entry>::recursive_insert(Binary_node<Entry> *sub_root,Binary_node<Entry> *node)
if (node->data >= sub_root->data)
if (sub_root->right_child == NULL)
sub_root->right_child = new Binary_node<Entry>(node->data);
else recursive_insert(sub_root->right_child, node);
else
if (sub_root->left_child == NULL)
sub_root->left_child = new Binary_node<Entry>(node->data);
else recursive_insert(sub_root->left_child, node);
template<class Entry>
Binary_node<Entry> * Binary_tree<Entry>::creat(Binary_node<Entry>* sub_root)
if (!sub_root)return NULL;
Binary_node<Entry> *tmp_root = new Binary_node<Entry>(sub_root->data);
tmp_root->left_child = creat(sub_root->left_child);
tmp_root->right_child = creat(sub_root->right_child);
return tmp_root;
template<class Entry>
bool Binary_tree<Entry>::empty()
return (root==NULL);
template<class Entry>
void Binary_tree<Entry>::preorder(void(*visit)(Entry &))
recursive_preorder(root, visit);
template<class Entry>
void Binary_tree<Entry>::inorder(void(*visit)(Entry &))
recursive_inorder(root, visit);
template<class Entry>
void Binary_tree<Entry>::postorder(void(*visit)(Entry &))
recursive_postorder(root, visit);
template<class Entry>
int Binary_tree<Entry>::size()
return recursive_size(root);
template<class Entry>
void Binary_tree<Entry>::clear()
recursive_clear(root);
root = nullptr;
count = 0;
template<class Entry>
int Binary_tree<Entry>::height()
return recursive_height(root);
template<class Entry>
void Binary_tree<Entry>::insert(const Entry & item)
if (empty())
root = new Binary_node<Entry>(item);
count++;
return;
stack<int>number;
int tmpcount = size();
while (tmpcount > 0)
if (tmpcount % 2 == 0)number.push(2);
else number.push(1);
tmpcount = (tmpcount - 1) / 2;
int direction = 0;
Binary_node<Entry> *p = root;
while (number.size() > 1)
direction = number.top();
if (direction == 2)p = p->right_child;
if (direction == 1)p = p->left_child;
number.pop();
direction = number.top();
if (direction == 2)p->right_child=new Binary_node<Entry>(item);
if (direction == 1)p->left_child = new Binary_node<Entry>(item);
count++;
template<class Entry>
Binary_node<Entry>* Binary_tree<Entry>::Get_root()
return root;
template<class Entry>
Binary_tree<Entry>::Binary_tree(const Binary_tree<Entry>& original)
Binary_node<Entry> * original_root = original.Get_root();
root = creat(original_root);
template<class Entry>
Binary_tree<Entry> & Binary_tree<Entry>::operator=(const Binary_tree<Entry>& original)
Binary_node<Entry> * original_root = original.Get_root();
if (root == original_root)return;
clear();
Binary_tree(original);
template<class Entry>
Binary_tree<Entry>::~Binary_tree()
clear();
//Binary_search_tree.h
#include"Binary_tree.cpp"
template<class Record>
class Binary_search_tree:public Binary_tree<Record>
public:
Binary_search_tree();
Error_code insert(const Record &item);
Error_code remove(const Record &item);
Error_code search(Record &item);
private:
Error_code recursive_insert(Binary_node<Record> *&sub_root, const Record &item);
Binary_node<Record> * recursive_search(Binary_node<Record> *&sub_root, const Record &item);
Error_code search_and_destroy(Binary_node <Record> *&sub_root, const Record &item);
Error_code destroy(Binary_node<Record> *&sub_root);
;
//Binary_search_tree.cpp
#include"Binary_search_tree.h"
#include<iostream>
using namespace std;
template<class Record>
Binary_search_tree<Record>::Binary_search_tree()
count = 0;
root = NULL;
template<class Record>
Error_code Binary_search_tree<Record>::insert(const Record & item)
if (recursive_insert(root, item) == success)
count++;
return success;
else return duplicate_error;
template<class Record>
Error_code Binary_search_tree<Record>::remove(const Record & item)
if (search_and_destroy(root, item) == success)
count--;
return success;
else return not_present;
template<class Record>
Error_code Binary_search_tree<Record>::search(Record & item)
Binary_node<Record> *p = recursive_search(root, item);
if (p == NULL)return not_present;
else
item = p->data;
return success;
template<class Record>
Error_code Binary_search_tree<Record>::recursive_insert(Binary_node<Record>*& sub_root, const Record & item)
if (!sub_root)
sub_root = new Binary_node<Record>(item);
return success;
else if (sub_root->data > item)return recursive_insert(sub_root->left_child, item);
else if (sub_root->data < item)return recursive_insert(sub_root->right_child, item);
else return duplicate_error;
template<class Record>
Binary_node<Record> * Binary_search_tree<Record>::recursive_search(Binary_node<Record>*& sub_root, const Record & item)
if (sub_root == NULL || sub_root->data == item)return sub_root;
else if (sub_root->data > item)return recursive_insert(sub_root->left_child, item);
else if (sub_root->data < item)return recursive_insert(sub_root->right_child, item);
template<class Record>
Error_code Binary_search_tree<Record>::search_and_destroy(Binary_node<Record>*& sub_root, const Record & item)
if (sub_root == NULL || sub_root->data == item)
return destroy(sub_root);
else if (sub_root->data > item)return destory(sub_root->left_child);
else if (sub_root->data < item)return destory(sub_root->right_child);
template<class Record>
Error_code Binary_search_tree<Record>::destroy(Binary_node<Record>*& sub_root)
if (sub_root == NULL)return not_present;
Binary_node<Entry> *to_delete = sub_root;
if (sub_root->left_child == NULL) sub_root = sub_root->right_child;
else if (sub_root->right_child == NULL) sub_root = sub_root->left_child;
else
to_delete = sub_root->left_child;
Binary_node<Entry> *parent = sub_root;
while (!to_delete->right_child)
parent = to_delete;
to_delete = to_delete->right_child;
sub_root->data = to_delete->data;
if (parent == sub_root)sub_root->left_child = to_delete->left_child; //Special condition:no right_child under to_delete
else parent->right_child = to_delete->right_child;
delete to_delete;
return success;
//AVL_tree.h
#include"Binary_search_tree.cpp"
template<class Record>
struct AVL_node :public Binary_node<Record>
Balance_factor balance;
AVL_node();
AVL_node(const Record &x);
void set_balance(Balance_factor b);
Balance_factor get_balance()const;
;
template<class Record>
inline AVL_node<Record>::AVL_node()
balance = equal_height;
template<class Record>
inline AVL_node<Record>::AVL_node(const Record & x)
data = x;
balance = equal_height;
template<class Record>
inline void AVL_node<Record>::set_balance(Balance_factor b)
balance = b;
template<class Record>
inline Balance_factor AVL_node<Record>::get_balance() const
return balance;
template<class Record>
class AVL_tree:public Binary_search_tree<Record>
public:
Error_code insert(const Record &new_data);
Error_code remove(Record &old_data);
private:
Error_code avl_insert(Binary_node<Record> * &sub_root, const Record &new_data, bool &taller);
void rotate_left(Binary_node<Record> * &sub_root);
void rotate_right(Binary_node<Record> * &sub_root);
void right_balance(Binary_node<Record> * &sub_root);
void left_balance(Binary_node<Record> * &sub_root);
//add for remove
Error_code avl_remove(Binary_node<Record> * &sub_root, Record &new_data, bool &shorter);
bool right_balance2(Binary_node<Record> * &sub_root);
bool left_balance2(Binary_node<Record> * &sub_root);
;
//AVL_tree.cpp
#include "AVL_Tree.h"
template<class Record>
Error_code AVL_tree<Record>::insert(const Record & new_data)
bool taller;
return avl_insert(root, new_data, taller);
template<class Record>
Error_code AVL_tree<Record>::remove(Record & old_data)
bool shorter = true;
return avl_remove(root, old_data, shorter);
template<class Record>
Error_code AVL_tree<Record>::avl_insert(Binary_node<Record>*& sub_root, const Record & new_data, bool & taller)
if (sub_root == NULL)
sub_root = new AVL_node<Record>(new_data);
taller = true;
return success;
else if (sub_root->data == new_data)
taller = false;
return duplicate_error;
else if (sub_root->data > new_data)
Error_code result = avl_insert(sub_root->left_child, new_data, taller);
if (taller == true)
switch (sub_root->get_balance())
case left_higher:
left_balance(sub_root);
taller = false;
break;
case equal_height:
sub_root->set_balance(left_higher);
break;
case right_higher:
sub_root->set_balance(equal_height);
taller = false;
break;
return result;
else
Error_code result = avl_insert(sub_root->right_child, new_data, taller);
if (taller == true)
switch (sub_root->get_balance())
case left_higher:
sub_root->set_balance(equal_height);
taller = false;
break;
case equal_height:
sub_root->set_balance(right_higher);
break;
case right_higher:
right_balance(sub_root);
taller = false;
break;
return result;
template<class Record>
void AVL_tree<Record>::rotate_left(Binary_node<Record>*& sub_root)
if (sub_root == nullptr || sub_root->right_child == nullptr)
cout << "WARNING:program error detected in rotate left" << endl;
else
Binary_node<Record> *right_tree = sub_root->right_child;
sub_root->right_child = right_tree->left_child;
right_tree->left_child = sub_root;
sub_root = right_tree;
template<class Record>
void AVL_tree<Record>::rotate_right(Binary_node<Record>*& sub_root)
if (sub_root == nullptr || sub_root->left_child == nullptr)
cout << "WARNING:program error detected in rotate right" << endl;
else
Binary_node<Record> *left_tree = sub_root->left_child;
sub_root->left_child = left_tree->right_child;
left_tree->right_child = sub_root;
sub_root = left_tree;
template<class Record>
void AVL_tree<Record>::right_balance(Binary_node<Record>*& sub_root)
Binary_node<Record> *&right_tree = sub_root->right_child;
switch (right_tree->get_balance())
case right_higher:
sub_root->set_balance(equal_height);
right_tree->set_balance(equal_height);
rotate_left(sub_root);
break;
case equal_height:
cout << "WARNING:program error detected in right balance" << endl;
break;
case left_higher:
Binary_node<Record> *sub_tree = right_tree->left_child;
switch (sub_tree->get_balance())
case equal_height:
sub_root->set_balance(equal_height);
right_tree->set_balance(equal_height);
break;
case left_higher:
sub_root->set_balance(equal_height);
right_tree->set_balance(right_higher);
break;
case right_higher:
sub_root->set_balance(left_higher);
right_tree->set_balance(equal_height);
break;
sub_tree->set_balance(equal_height);
rotate_right(right_tree);
rotate_left(sub_root);
break;
template<class Record>
void AVL_tree<Record>::left_balance(Binary_node<Record>*& sub_root)
Binary_node<Record> *&left_tree = sub_root->left_child;
switch (left_tree->get_balance())
case left_higher:
sub_root->set_balance(equal_height);
left_tree->set_balance(equal_height);
rotate_right(sub_root);
break;
case equal_height:
cout << "WARNING:program error detected in left balance" << endl;
break;
case right_higher:
Binary_node<Record> *sub_tree = left_tree->right_child;
switch (sub_tree->get_balance())
case equal_height:
sub_root->set_balance(equal_height);
left_tree->set_balance(equal_height);
break;
case right_higher:
sub_root->set_balance(equal_height);
left_tree->set_balance(left_higher);
break;
case left_higher:
sub_root->set_balance(right_higher);
left_tree->set_balance(equal_height);
break;
sub_tree->set_balance(equal_height);
rotate_left(left_tree);
rotate_right(sub_root);
break;
template<class Record>
Error_code AVL_tree<Record>::avl_remove(Binary_node<Record>*& sub_root, Record & new_data, bool & shorter)
Error_code result;
if (sub_root == NULL)
shorter = false;
return not_present;
else if (new_data == sub_root->data)
Binary_node<Record>*to_delete = sub_root;
if (sub_root->right_child == NULL)
sub_root = sub_root->left_child;
shorter = true;
delete to_delete;
return success;
else if (sub_root->left_child == NULL)
sub_root = sub_root->right_child;
shorter = true;
delete to_delete;
return success;
else
to_delete = sub_root->left_child;
Binary_node<Record> *parent = sub_root;
while (!to_delete->right_child)
parent = to_delete;
to_delete = to_delete->left_child;
sub_root->data = to_delete->data;
new_data = to_delete->data;
delete to_delete;
if (new_data < sub_root->data)
result = avl_remove(sub_root->left_child, new_data, shorter);
if (shorter == true)
switch (sub_root->get_balance())
case left_higher:
sub_root->set_balance(equal_height);
break;
case equal_height:
sub_root->set_balance(right_higher);
break;
case right_higher:
shorter = right_balance2(sub_root);
break;
if (new_data > sub_root->data)
result = avl_remove(sub_root->right_child, new_data, shorter);
if (shorter == true)
switch (sub_root->get_balance())
case left_higher:
shorter=left_balance2(sub_root);
break;
case equal_height:
break;
sub_root->set_balance(left_higher);
case right_higher:
sub_root->set_balance(equal_height);
break;
return result;
template<class Record>
bool AVL_tree<Record>::right_balance2(Binary_node<Record>*& sub_root)
bool shorter;
Binary_node<Record> *&right_tree = sub_root->right_child;
switch (right_tree->get_balance())
case right_higher: //RR height--
sub_root->set_balance(equal_height);
right_tree->set_balance(equal_height);
rotate_left(sub_root);
shorter = true;
break;
case equal_height: //R- height doesn't change
right_tree->set_balance(left_higher);
rotate_left(sub_root);
shorter = false;
break;
case left_higher: //RL height--
Binary_node<Record> *sub_tree = right_tree->left_child;
switch (sub_tree->get_balance())
case equal_height:
sub_root->set_balance(equal_height);
right_tree->set_balance(equal_height);
break;
case left_higher:
sub_root->set_balance(equal_height);
right_tree->set_balance(right_higher);
break;
case right_higher:
sub_root->set_balance(left_higher);
right_tree->set_balance(equal_height);
break;
sub_tree->set_balance(equal_height);
rotate_right(right_tree);
rotate_left(sub_root);
shorter = true;
break;
return shorter;
template<class Record>
bool AVL_tree<Record>::left_balance2(Binary_node<Record>*& sub_root)
bool shorter;
Binary_node<Record> *&left_tree = sub_root->left_child;
switch (left_tree->get_balance())
case left_higher: //LL height--
sub_root->set_balance(equal_height);
left_tree->set_balance(equal_height);
rotate_right(sub_root);
shorter = true;
break;
case equal_height: //L- height doesn't change
left_tree->set_balance(right_higher);
rotate_right(sub_root);
shorter = false;
break;
case right_higher: //LR height--
Binary_node<Record> *sub_tree = left_tree->left_child;
switch (sub_tree->get_balance())
case equal_height:
sub_root->set_balance(equal_height);
left_tree->set_balance(equal_height);
break;
case left_higher:
left_tree->set_balance(equal_height);
sub_root->set_balance(right_higher);
break;
case right_higher:
sub_root->set_balance(equal_height);
left_tree->set_balance(left_higher);
break;
sub_tree->set_balance(equal_height);
rotate_left(left_tree);
rotate_right(sub_root);
shorter = true;
break;
return shorter;
下面放一个我的驱动函数main可以用来测试代码,有三个,两个被我注释掉了,分别是测试Binary_tree、Binary_search_tree和avl_tree:
//main.cpp
#include"AVL_Tree.cpp"
#include<iostream>
#include<string>
using namespace std;
template<class Entry>
void print(Entry &item)
cout << item << ' ';
void UI()
cout << "***************************Binary_tree*********************************" << endl;
cout << "MENU:" << endl;
cout << "1.Preorder ." << endl;
cout << "2.Inorder." << endl;
cout << "3.Postorder." << endl;
cout << "4.Size." << endl;
cout << "5.Clear." << endl;
cout << "6.Height." << endl;
cout << "7.Insert." << endl;
cout << "0.Exit." << endl;
void flash()
system("pause");
system("cls");
UI();
int Get_command()
cout << "Please choose one of the number above." << endl;
string tmp;
int command;
cin >> tmp;
command = tmp[0] - '0';
while (command != 0 && command != 1 && command != 2 && command != 3
&& command != 4 && command != 5 && command != 6 && command != 7)
cout << "Invalid command,please enter again." << endl;
cin >> tmp;
command = tmp[0] - '0';
return command;
//Binary_tree's main
//void main()
// UI();
// Binary_tree<int> tmp;
// int command;
// for (int i = 0; i < 11; i++)tmp.insert(i);
// do
//
// command = Get_command();
// switch (command)
//
// case 1:
// cout << "This is the preorder tranverse." << endl;
// tmp.preorder(print);
// flash();
// break;
//
// case 2:
// cout << "This is the inorder tranverse." << endl;
// tmp.inorder(print);
// flash();
// break;
//
// case 3:
// cout << "This is the postorder tranverse." << endl;
// tmp.postorder(print);
// flash();
// break;
//
// case 4:
// cout << "The size of this Binary_tree is : ";
// cout << tmp.size() << endl;
// flash();
// break;
//
// case 5:
// tmp.clear();
// cout << "Clear Success!" << endl;
// flash();
// break;
//
// case 6:
// cout << "The height of this Binary_tree is : ";
// cout << tmp.height() << endl;
// flash();
// break;
//
// case 7:
// cout << "Please enter the item you want to insert." << endl;
// int item;
// cin >> item;
// tmp.insert(item);
// cout << "Insert success." << endl;
// flash();
// break;
//
// case 0:
// cout << "You'll exit the programm later." << endl;
// system("pause");
// return ;
//
// default:
// break;
//
// while (command);
//
//Binary_search_tree's main
//void main()
// UI();
// Binary_search_tree<int> tmp;
// int command;
// for (int i = 0; i < 10; i++)tmp.insert(i);
// do
//
// command = Get_command();
// switch (command)
//
// case 1:
// cout << "This is the preorder tranverse." << endl;
// tmp.preorder(print);
// flash();
// break;
//
// case 2:
// cout << "This is the inorder tranverse." << endl;
// tmp.inorder(print);
// flash();
// break;
//
// case 3:
// cout << "This is the postorder tranverse." << endl;
// tmp.postorder(print);
// flash();
// break;
//
// case 4:
// cout << "The size of this Binary_tree is : ";
// cout << tmp.size() << endl;
// flash();
// break;
//
// case 5:
// tmp.clear();
// cout << "Clear Success!" << endl;
// flash();
// break;
//
// case 6:
// cout << "The height of this Binary_tree is : ";
// cout << tmp.height() << endl;
// flash();
// break;
//
// case 7:
// cout << "Please enter the item you want to insert." << endl;
// int item;
// cin >> item;
// tmp.insert(item);
// cout << "Insert success." << endl;
// flash();
// break;
//
// case 0:
// cout << "You'll exit the programm later." << endl;
// system("pause");
// return;
//
// default:
// break;
//
// while (command);
//
//avl_tree's main:
void main()
UI();
AVL_tree<int>tmp;
int command;
for (int i = 0; i < 10; i++)
tmp.insert(i);
do
command = Get_command();
switch (command)
case 1:
cout << "This is the preorder tranverse." << endl;
tmp.preorder(print);
cout << endl;
flash();
break;
case 2:
cout << "This is the inorder tranverse." << endl;
tmp.inorder(print);
cout << endl;
flash();
break;
case 3:
cout << "This is the postorder tranverse." << endl;
tmp.postorder(print);
cout << endl;
flash();
break;
case 4:
cout << "The size of this Binary_tree is : ";
cout << tmp.size() << endl;
flash();
break;
case 5:
tmp.clear();
cout << "Clear Success!" << endl;
flash();
break;
case 6:
cout << "The height of this Binary_tree is : ";
cout << tmp.height() << endl;
flash();
break;
case 7:
cout << "Please enter the item you want to insert." << endl;
int item;
cin >> item;
tmp.insert(item);
cout << "Insert success." << endl;
flash();
break;
case 0:
cout << "You'll exit the programm later." << endl;
system("pause");
return;
default:
break;
while (command);
以上是关于[数据结构]Binary_tree | Binary_search_tree | avl_tree的主要内容,如果未能解决你的问题,请参考以下文章
leetcode -day23 Construct Binary Tree from Inorder and Postorder Traversal & Construct Binar
LeetCode 236.lowest-common-ancestor-of-a-binary-tr