14.State-理解原理即可Flink中状态的自动管理无状态计算和有状态计算状态分类Managed State & Raw StateKeyed State&Operator Sta
Posted 涂作权的博客
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了14.State-理解原理即可Flink中状态的自动管理无状态计算和有状态计算状态分类Managed State & Raw StateKeyed State&Operator Sta相关的知识,希望对你有一定的参考价值。
14.State-理解原理即可
14.1.Flink中状态的自动管理
14.2.无状态计算和有状态计算
14.2.2.有状态计算,需要考虑历史值,如:sum
14.2.3.状态分类
14.2.4.Managed State & Raw State
14.2.5.Keyed State & Operator State
14.2.5.1.Keyed State & Operator State
14.2.6.代码演示-ManagerState-keyState
14.2.7.代码演示–ManagerState - OperatorState
14.State-理解原理即可
14.1.Flink中状态的自动管理
之前写的Flink代码中其实已经做好了状态自动管理,如
发送hello ,得出(hello,1)
再发送hello ,得出(hello,2)
说明Flink已经自动的将当前数据和历史状态/历史结果进行了聚合,做到了状态的自动管理
在实际开发中绝大多数情况下,我们直接使用自动管理即可
一些特殊情况才会使用手动的状态管理!—后面项目中会使用!
所以这里得先学习state状态如何手动管理!
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
/**
* @author tuzuoquan
* @date 2022/5/9 9:37
*/
public class SourceDemo03_Socket
public static void main(String[] args) throws Exception
//TODO 0.env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//TODO 1.source
DataStream<String> lines = env.socketTextStream("localhost", 9999);
//TODO 2.transformation
/*SingleOutputStreamOperator<String> words = lines.flatMap(new FlatMapFunction<String, String>()
@Override
public void flatMap(String value, Collector<String> out) throws Exception
String[] arr = value.split(" ");
for (String word : arr)
out.collect(word);
);
words.map(new MapFunction<String, Tuple2<String,Integer>>()
@Override
public Tuple2<String, Integer> map(String value) throws Exception
return Tuple2.of(value,1);
);*/
SingleOutputStreamOperator<Tuple2<String,Integer>> wordAndOne = lines.flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>()
@Override
public void flatMap(String value, Collector<Tuple2<String, Integer>> out) throws Exception
String[] arr = value.split(" ");
for (String word : arr)
out.collect(Tuple2.of(word, 1));
);
SingleOutputStreamOperator<Tuple2<String, Integer>> result =
wordAndOne.keyBy(t -> t.f0).sum(1);
//TODO 3.sink
result.print();
//TODO 4.execute
env.execute();
输出结果:
5> (world,1)
3> (hello,1)
5> (aaa,1)
4> (bbb,1)
7> (ccc,1)
5> (aaa,2)
14.2.无状态计算和有状态计算
无状态计算,不需要考虑历史值,如map
hello --> (hello,1)
hello --> (hello,1)
14.2.1.无状态计算
14.2.2.有状态计算,需要考虑历史值,如:sum
hello , (hello,1)
hello , (hello,2)
14.2.3.状态分类
分类详细图解:
14.2.4.Managed State & Raw State
14.2.5.Keyed State & Operator State
Managed State分为两种,Keyed State和Operator State (Raw State都是Operator State)
14.2.5.1.Keyed State & Operator State
Managed State分为两种,Keyed State和Operator State(Raw State都是Operator State)
14.2.6.代码演示-ManagerState-keyState
https://ci.apache.org/projects/flink/flink-docs-release-1.12/dev/stream/state/state.html
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
/**
* Desc 使用KeyState中的ValueState获取流数据中的最大值/实际中可以使用maxBy即可
*
* @author tuzuoquan
* @date 2022/5/10 0:37
*/
public class StateDemo01_KeyState
public static void main(String[] args) throws Exception
//TODO 0.env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//TODO 1.source
DataStream<Tuple2<String, Long>> tupleDS = env.fromElements(
Tuple2.of("北京", 1L),
Tuple2.of("上海", 2L),
Tuple2.of("北京", 6L),
Tuple2.of("上海", 8L),
Tuple2.of("北京", 3L),
Tuple2.of("上海", 4L)
);
//TODO 2.transformation
//需求:求各个城市的value最大值
//实际中使用maxBy即可
DataStream<Tuple2<String, Long>> result1 = tupleDS.keyBy(t -> t.f0).maxBy(1);
//学习时可以使用KeyState中的ValueState来实现maxBy的底层
DataStream<Tuple3<String, Long, Long>> result2 = tupleDS.keyBy(t -> t.f0).map(new RichMapFunction<Tuple2<String, Long>, Tuple3<String, Long, Long>>()
//-1.定义一个状态用来存放最大值
private ValueState<Long> maxValueState;
//-2.状态初始化
@Override
public void open(Configuration parameters) throws Exception
//创建状态描述器
ValueStateDescriptor stateDescriptor = new ValueStateDescriptor("maxValueState", Long.class);
//根据状态描述器获取/初始化状态
maxValueState = getRuntimeContext().getState(stateDescriptor);
//-3.使用状态
@Override
public Tuple3<String, Long, Long> map(Tuple2<String, Long> value) throws Exception
Long currentValue = value.f1;
//获取状态
Long historyValue = maxValueState.value();
//判断状态
if (historyValue == null || currentValue > historyValue)
historyValue = currentValue;
//更新状态
maxValueState.update(historyValue);
return Tuple3.of(value.f0, currentValue, historyValue);
else
return Tuple3.of(value.f0, currentValue, historyValue);
);
//TODO 3.sink
//result1.print();
//4> (北京,6)
//1> (上海,8)
result2.print();
//1> (上海,xxx,8)
//4> (北京,xxx,6)
//TODO 4.execute
env.execute();
输出结果:
4> (北京,1,1)
4> (北京,6,6)
4> (北京,3,6)
1> (上海,2,2)
1> (上海,8,8)
1> (上海,4,8)
14.2.7.代码演示–ManagerState - OperatorState
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.runtime.state.FunctionInitializationContext;
import org.apache.flink.runtime.state.FunctionSnapshotContext;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.checkpoint.CheckpointedFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.RichParallelSourceFunction;
import java.util.Iterator;
/**
* Desc 使用OperatorState中的ListState模拟KafkaSource进行offset维护
*
* @author tuzuoquan
* @date 2022/5/16 12:12
*/
public class StateDemo02_OperatorState
public static void main(String[] args) throws Exception
//TODO 0.env
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
//并行度设置为1方便观察
env.setParallelism(1);
//每隔1s执行一次Checkpoint
env.enableCheckpointing(1000);
env.setStateBackend(new FsStateBackend("file:///D:/ckp"));
env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
//固定延迟重启策略: 程序出现异常的时候,重启2次,每次延迟3秒钟重启,超过2次,程序退出
env.setRestartStrategy(RestartStrategies.fixedDelayRestart(2, 3000));
//TODO 1.source
DataStreamSource<String> ds = env.addSource(new MyKafkaSource()).setParallelism(1);
//TODO 2.transformation
//TODO 3.sink
ds.print();
//TODO 4.execute
env.execute();
public static class MyKafkaSource extends RichParallelSourceFunction<String> implements CheckpointedFunction
private boolean flag = true;
//-1.声明ListState,用来存放offset
private ListState<Long> offsetState = null;
//用来存放offset的值
private Long offset = 0L;
//-2.初始化/创建ListState
@Override
public void initializeState(FunctionInitializationContext context) throws Exception
ListStateDescriptor<Long> stateDescriptor = new ListStateDescriptor<Long>("offsetState", Long.class);
offsetState = context.getOperatorStateStore().getListState(stateDescriptor);
//-3.使用state
@Override
public void run(SourceContext<String> ctx) throws Exception
while (flag)
Iterator<Long> iterator = offsetState.get().iterator();
if(iterator.hasNext())
offset = iterator.next();
offset += 1;
int subTaskId = getRuntimeContext().getIndexOfThisSubtask();
ctx.collect("subTaskId:"+ subTaskId + ",当前的offset值为:"+offset);
Thread.sleep(1000);
//模拟异常
if(offset % 5 == 0)
throw new Exception("bug出现了.....");
//-4.state持久化
//该方法会定时执行将state状态从内存存入Checkpoint磁盘目录中
@Override
public void snapshotState(FunctionSnapshotContext context) throws Exception
//清理内容数据并存入Checkpoint磁盘目录中
offsetState.clear();
offsetState.add(offset);
@Override
public void cancel()
flag = false;
输出结果:
subTaskId:0,当前的offset值为:1
subTaskId:0,当前的offset值为:2
subTaskId:0,当前的offset值为:3
subTaskId:0,当前的offset值为:4
subTaskId:0,当前的offset值为:5
subTaskId:0,当前的offset值为:6
subTaskId:0,当前的offset值为:7
subTaskId:0,当前的offset值为:8
subTaskId:0,当前的offset值为:9
subTaskId:0,当前的offset值为:10
subTaskId:0,当前的offset值为:11
subTaskId:0,当前的offset值为:12
subTaskId:0,当前的offset值为:13
subTaskId:0,当前的offset值为:14
subTaskId:0,当前的offset值为:15
Exception in thread "main" org.apache.flink.runtime.client.JobExecutionException: Job execution failed.
at org.apache.flink.runtime.jobmaster.JobResult.toJobExecutionResult(JobResult.java:147)
at org.apache.flink.runtime.minicluster.MiniClusterJobClient.lambda$getJobExecutionResult$2(MiniClusterJobClient.java:119)
at java.util.concurrent.CompletableFuture.uniApply(CompletableFuture.java:616)
at java.util.concurrent.CompletableFuture$UniApply.tryFire(CompletableFuture.java:591)
at java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:488)
at java.util.concurrent.CompletableFuture.complete(CompletableFuture.java:1975)
at org.apache.flink.runtime.rpc.akka.AkkaInvocationHandler.lambda$invokeRpc$0(AkkaInvocationHandler.java:229)
at java.util.concurrent.CompletableFuture.uniWhenComplete(CompletableFuture.java:774)
at java.util.concurrent.CompletableFuture$UniWhenComplete.tryFire(CompletableFuture.java:750)
at java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:488)
at java.util.concurrent.CompletableFuture.complete(CompletableFuture.java:1975)
at org.apache.flink.runtime.concurrent.FutureUtils$1.onComplete(FutureUtils.java:996)
at akka.dispatch.OnComplete.internal(Future.scala:264)
at akka.dispatch.OnComplete.internal(Future.scala:261)
at akka.dispatch.japi$CallbackBridge.apply(Future.scala:191)
at akka.dispatch.japi$CallbackBridge.apply(Future.scala:188)
at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:60)
at org.apache.flink.runtime.concurrent.Executors$DirectExecutionContext.execute(Executors.java:74)
at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:68)
at scala.concurrent.impl.Promise$DefaultPromise.$anonfun$tryComplete$1(Promise.scala:284)
at scala.concurrent.impl.Promise$DefaultPromise.$anonfun$tryComplete$1$adapted(Promise.scala:284)
at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:284)
at akka.pattern.PromiseActorRef.$bang(AskSupport.scala:573)
at akka.pattern.PipeToSupport$PipeableFuture$$anonfun$pipeTo$1.applyOrElse(PipeToSupport.scala:22)
at akka.pattern.PipeToSupport$PipeableFuture$$anonfun$pipeTo$1.applyOrElse(PipeToSupport.scala:21)
at scala.concurrent.Future.$anonfun$andThen$1(Future.scala:532)
at scala.concurrent.impl.Promise.liftedTree1$1(Promise.scala:29)
at scala.concurrent.impl.Promise.$anonfun$transform$1(Promise.scala:29)
at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:60)
at akka.dispatch.BatchingExecutor$AbstractBatch.processBatch(BatchingExecutor.scala:55)
at akka.dispatch.BatchingExecutor$BlockableBatch.$anonfun$run$1(BatchingExecutor.scala:91)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:12)
at scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:81)
at akka.dispatch.BatchingExecutor$BlockableBatch.run(BatchingExecutor.scala:91)
at akka.dispatch.TaskInvocation.run(AbstractDispatcher.scala:40)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(ForkJoinExecutorConfigurator.scala:44)
at akka.dispatch.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
at akka.dispatch.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
at akka.dispatch.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
at akka.dispatch.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
Caused by: org.apache.flink.runtime.JobException: Recovery is suppressed by FixedDelayRestartBackoffTimeStrategy(maxNumberRestartAttempts=2, backoffTimeMS=3000)
at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.handleFailure(ExecutionFailureHandler.java:116)
at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler.getFailureHandlingResult(ExecutionFailureHandler.java:78)
at org.apache.flink.runtime.scheduler.DefaultScheduler.handleTaskFailure(DefaultScheduler.java:224)
at org.apache.flink.runtime.scheduler.DefaultScheduler.maybeHandleTaskFailure(DefaultScheduler.java:217)
at org.apache.flink.runtime.scheduler.DefaultScheduler.updateTaskExecutionStateInternal(DefaultScheduler.java:208)
at org.apache.flink.runtime.scheduler.SchedulerBase.updateTaskExecutionState(SchedulerBase.java:610)
at org.apache.flink.runtime.scheduler.SchedulerNG.updateTaskExecutionState(SchedulerNG.java:89)
at org.apache.flink.runtime.jobmaster.JobMaster.updateTaskExecutionState(JobMaster.java:419)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcInvocation(AkkaRpcActor.java:286)
at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleRpcMessage(AkkaRpcActor.java:201)
at org.apache.flink.runtime.rpc.akka.FencedAkkaRpcActor.handleRpcMessage(FencedAkkaRpcActor.java:74)
at org.apache.flink.runtime.rpc.akka.AkkaRpcActor.handleMessage(AkkaRpcActor.java:154)
at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:26)
at akka.japi.pf.UnitCaseStatement.apply(CaseStatements.scala:21)
at scala.PartialFunction.applyOrElse(PartialFunction.scala:123)
at scala.PartialFunction.applyOrElse$(PartialFunction.scala:122)
at akka.japi.pf.UnitCaseStatement.applyOrElse(CaseStatements.scala:21)
at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:171)
at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:172)
at scala.PartialFunction$OrElse.applyOrElse(PartialFunction.scala:172)
at akka.actor.Actor.aroundReceive(Actor.scala:517)
at akka.actor.Actor.aroundReceive$(Actor.scala:515)
at akka.actor.AbstractActor.aroundReceive(AbstractActor.scala:225)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:592)
以上是关于14.State-理解原理即可Flink中状态的自动管理无状态计算和有状态计算状态分类Managed State & Raw StateKeyed State&Operator Sta的主要内容,如果未能解决你的问题,请参考以下文章