数据分析45讲—决策树(笔记)

Posted 啊~小 l i

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了数据分析45讲—决策树(笔记)相关的知识,希望对你有一定的参考价值。

决策树

原理:决策树基本上就是把我们以前的经验总结出来。
打篮球的训练集如果我们要出门打篮球,一般会根据“天气”、“温度”、“湿度”、“刮风”这几个条件来判断,最后得到结果:去打篮球?还是不去?

决策树构造

构造就是生成一棵完整的决策树。简单来说,构造的过程就是选择什么属性作为节点的过程,那么在构造过程中,会存在三种节点:

  • 根节点:就是树的最顶端,最开始的那个节点。在上图中,“天气”就是一个根节点;
  • 内部节点:就是树中间的那些节点,比如说“温度”、“湿度”、“刮风”;
  • 叶节点:就是树最底部的节点,也就是决策结果。

那么在构造过程中,你要解决三个重要的问题:

  • 选择哪个属性作为根节点;
  • 选择哪些属性作为子节点;
  • 什么时候停止并得到目标状态,即叶节点。

剪枝决策树构造出来之后是不是就结束了呢?我们可能还需要对决策树进行剪枝。剪枝就是给决策树瘦身,这一步想实现的目标就是,不需要太多的判断,同样可以得到不错的结果。之所以这么做,是为了防止“过拟合”(Overfitting)现象的发生。
“过拟合”这个概念你一定要理解,它指的就是模型的训练结果“太好了”,以至于在实际应用的过程中,会存在“死板”的情况,导致分类错误。图一欠拟合,图三过拟合

**造成过拟合的原因之一就是因为训练集中样本量较小。**如果决策树选择的属性过多,构造出来的决策树一定能够“完美”地把训练集中的样本分类,但是这样就会把训练集中一些数据的特点当成所有数据的特点,但这个特点不一定是全部数据的特点,这就使得这个决策树在真实的数据分类中出现错误,也就是模型的“泛化能力”差。

泛化能力

泛化能力指的分类器是通过训练集抽象出来的分类能力,你也可以理解是举一反三的能力。如果我们太依赖于训练集的数据,那么得到的决策树容错率就会比较低,泛化能力差。因为训练集只是全部数据的抽样,并不能体现全部数据的特点。

剪枝

**预剪枝是在决策树构造时就进行剪枝。**方法是在构造的过程中对节点进行评估,如果对某个节点进行划分,在验证集中不能带来准确性的提升,那么对这个节点进行划分就没有意义,这时就会把当前节点作为叶节点,不对其进行划分。
后剪枝就是在生成决策树之后再进行剪枝,通常会从决策树的叶节点开始,逐层向上对每个节点进行评估。如果剪掉这个节点子树,与保留该节点子树在分类准确性上差别不大,或者剪掉该节点子树,能在验证集中带来准确性的提升,那么就可以把该节点子树进行剪枝。方法是:用这个节点子树的叶子节点来替代该节点,类标记为这个节点子树中最频繁的那个类。

Demo:判断要不要打篮球

打篮球的数据集:

显然将哪个属性(天气、温度、湿度、刮风)作为根节点是个关键问题,在这里我们先介绍两个指标:纯度和信息熵。

纯度

你可以把决策树的构造过程理解成为寻找纯净划分的过程。数学上,我们可以用纯度来表示,纯度换一种方式来解释就是让目标变量的分歧最小。
我在这里举个例子,假设有 3 个集合:

  1. 集合 1:6 次都去打篮球;
  2. 集合 2:4 次去打篮球,2 次不去打篮球;
  3. 集合 3:3 次去打篮球,3 次不去打篮球。

按照纯度指标来说,集合 1> 集合 2> 集合 3。因为集合 1 的分歧最小,集合 3 的分歧最大。

信息熵(entropy)

信息熵(entropy):它表示了信息的不确定度。
  在信息论中,随机离散事件出现的概率存在着不确定性。为了衡量这种信息的不确定性,信息学之父香农引入了信息熵的概念,并给出了计算信息熵的数学公式:

p(i|t) 代表了节点 t 为分类 i 的概率,其中 log2 为取以 2 为底的对数。这里我们不是来介绍公式的,而是说存在一种度量,它能帮我们反映出来这个信息的不确定度。当不确定性越大时,它所包含的信息量也就越大,信息熵也就越高。
**简单的例子:**假设有 2 个集合

  • 集合 1:5 次去打篮球,1 次不去打篮球;
    在集合 1 中,有 6 次决策,其中打篮球是 5 次,不打篮球是 1 次。那么假设:类别 1 为“打篮球”,即次数为 5;类别 2 为“不打篮球”,即次数为 1。那么节点划分为类别 1 的概率是 5/6,为类别 2 的概率是 1/6,带入上述信息熵公式可以计算得出:

  • 集合 2:3 次去打篮球,3 次不去打篮球。
    集合 2 中,也是一共 6 次决策,其中类别 1 中“打篮球”的次数是 3,类别 2“不打篮球”的次数也是 3,那么信息熵为多少呢?我们可以计算得出

    信息熵越大,纯度越低。当集合中的所有样本均匀混合时,信息熵最大,纯度最低。
    我们在构造决策树的时候,会基于纯度来构建。而经典的 “不纯度”的指标有三种,分别是信息增益(ID3 算法)、信息增益率(C4.5 算法)以及基尼指数(Cart 算法)。

构造决策树的算法

ID3

ID3 算法计算的是信息增益, 信息增益指的就是划分可以带来纯度的提高,信息熵的下降。它的计算公式,是父亲节点的信息熵减去所有子节点的信息熵。在计算的过程中,我们会计算每个子节点的归一化信息熵,即按照每个子节点在父节点中出现的概率,来计算这些子节点的信息熵。所以信息增益的公式可以表示为:

公式中 D 是父亲节点,Di 是子节点,Gain(D,a) 中的 a 作为 D 节点的属性选择
例子:
假设天气 = 晴的时候,会有 5 次去打篮球,5 次不打篮球。其中 D1 刮风 = 是,有 2 次打篮球,1 次不打篮球。D2 刮风 = 否,有 3 次打篮球,4 次不打篮球。那么 a 代表节点的属性,即天气 = 晴。

我们基于 ID3 的算法规则,完整地计算下我们的训练集,训练集中一共有 7 条数据,3 个打篮球,4 个不打篮球,所以根节点的信息熵是:

如果你将天气作为属性的划分,会有三个叶子节点 D1、D2 和 D3,分别对应的是晴天、阴天和小雨。我们用 + 代表去打篮球,- 代表不去打篮球。那么第一条记录,晴天不去打篮球,可以记为 1-,于是我们可以用下面的方式来记录 D1,D2,D3:
D1(天气 = 晴天)=1-,2-,6+
D2(天气 = 阴天)=3+,7-
D3(天气 = 小雨)=4+,5-
我们先分别计算三个叶子节点的信息熵:

因为 D1 有 3 个记录,D2 有 2 个记录,D3 有 2 个记录,所以 D 中的记录一共是 3+2+2=7,即总数为 7。所以 D1 在 D(父节点)中的概率是 3/7,D2 在父节点的概率是 2/7,D3 在父节点的概率是 2/7。那么作为子节点的归一化信息熵 = 3/70.918+2/71.0+2/7*1.0=0.965。
天气作为属性节点的信息增益为,Gain(D , 天气)=0.985-0.965=0.020。
同理我们可以计算出其他属性作为根节点的信息增益,它们分别为 :
Gain(D , 温度)=0.128
Gain(D , 湿度)=0.020
Gain(D , 刮风)=0.020
我们能看出来温度作为属性的信息增益最大。因为 ID3 就是要将信息增益最大的节点作为父节点,这样可以得到纯度高的决策树,所以我们将温度作为根节点。其决策树状图分裂为下图所示:

然后我们要将上图中第一个叶节点,也就是 D1=1-,2-,3+,4+进一步进行分裂,往下划分,计算其不同属性(天气、湿度、刮风)作为节点的信息增益,可以得到:
Gain(D , 湿度)=1
Gain(D , 天气)=1
Gain(D , 刮风)=0.3115
我们能看到湿度,或者天气为 D1 的节点都可以得到最大的信息增益,这里我们选取湿度作为节点的属性划分。同理,我们可以按照上面的计算步骤得到完整的决策树,结果如下:

于是我们通过 ID3 算法得到了一棵决策树。ID3 的算法规则相对简单,可解释性强。同样也存在缺陷,比如我们会发现 ID3 算法倾向于选择取值比较多的属性。这样,如果我们把“编号”作为一个属性(一般情况下不会这么做,这里只是举个例子),那么“编号”将会被选为最优属性 。但实际上“编号”是无关属性的,它对“打篮球”的分类并没有太大作用。
ID3 有一个缺陷就是,有些属性可能对分类任务没有太大作用,但是他们仍然可能会被选为最优属性。这种缺陷不是每次都会发生,只是存在一定的概率。在大部分情况下,ID3 都能生成不错的决策树分类。针对可能发生的缺陷,后人提出了新的算法进行改进。

在 ID3 算法上进行改进的 C4.5 算法

  1. 采用信息增益率
    因为 ID3 在计算的时候,倾向于选择取值多的属性。为了避免这个问题,C4.5 采用信息增益率的方式来选择属性。信息增益率 = 信息增益 / 属性熵
  2. 采用悲观剪枝
    ID3 构造决策树的时候,容易产生过拟合的情况。在 C4.5 中,会在决策树构造之后采用悲观剪枝(PEP),这样可以提升决策树的泛化能力。
    悲观剪枝是后剪枝技术中的一种,通过递归估算每个内部节点的分类错误率,比较剪枝前后这个节点的分类错误率来决定是否对其进行剪枝。这种剪枝方法不再需要一个单独的测试数据集。
  3. 离散化处理连续属性
    C4.5 可以处理连续属性的情况,对连续的属性进行离散化的处理。比如打篮球存在的“湿度”属性,不按照“高、中”划分,而是按照湿度值进行计算,那么湿度取什么值都有可能。该怎么选择这个阈值呢,C4.5 选择具有最高信息增益的划分所对应的阈值。
  4. 处理缺失值
    针对数据集不完整的情况,C4.5 也可以进行处理。

总结:

决策树学习通常包括三个步骤:

  1. 特征选择。选取最优特征来划分特征空间,用信息增益或者信息增益比来选择
  2. 决策树的生成。ID3、C4.5、CART
  3. 剪枝

总结优缺点:
ID3:
优点:算法简单,通俗易懂
缺陷:1. 无法处理缺失值
2. 只能处理离散值,无法处理连续值
3. 用信息增益作为划分规则,存在偏向于选择取值较多的特征。因为特征取值越多,说明划分的越细,不确定性越低,信息增益则越高
4. 容易出现过拟合

C4.5:
优点:1. 能够处理缺省值
2. 能对连续值做离散处理
3. 使用信息增益比,能够避免偏向于选择取值较多的特征。因为信息增益比=信息增益/属性熵,属性熵是根据属性的取值来计算的,一相除就会抵消掉
4. 在构造树的过程中,会剪枝,减少过拟合
缺点:构造决策树,需要对数据进行多次扫描和排序,效率低

以上是关于数据分析45讲—决策树(笔记)的主要内容,如果未能解决你的问题,请参考以下文章

统计学习笔记之决策树

《机器学习》(周志华)第4章 决策树 笔记 理论及实现——“西瓜树”

分类算法:决策树(C4.5)(转)

R语言使用party包中的ctree函数构建条件推理决策树的流程和步骤条件推理决策树是传统决策树的一个重要变体条件推理树的分裂是基于显著性测试而不是熵/纯度/同质性度量来选择分裂

机器学习之决策树

机器学习--决策树