深度剖析HMM(附Python代码)4.HMM代码测试及hmmlearn介绍
Posted tostq
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了深度剖析HMM(附Python代码)4.HMM代码测试及hmmlearn介绍相关的知识,希望对你有一定的参考价值。
相信经过上几节的说明,大家对于HMM应该有比较好的了解,也许大家已经自己试着运行代码了。
这一节主要介绍下另一个著名的HMM的Python库——hmmlearn,这个库提供了三个HMM模型(高斯HMM、离散HMM及高斯混合HMM),比我的代码速度更快,而且更有稳定,而且其还提供了相应的教程和API函数说明:http://hmmlearn.readthedocs.io/en/latest/index.html
而本文提供的代码更为简单,比较适合初学者学习参考,但不适合实际应用,实际应用可以使用hmmlearn。
为了考察本文代码的准确性,本节选择hmmlearn作为参考组,利用python测试工具unnitest,来考察代码的正确性。大体思路是先利用hmmlearn初始化一个具体HMM模型作为参照组,并生成一段序列,再将该序列作为本文HMM模型的训练样本,最后比较同参照组的参数差别。
1、python测试工具unnitest
测试工具unnitest非常容易使用,首先是建立一个继承自TestCase的测试类,然后通过覆盖setUp()完成相关初始化,最后通过覆盖tearDown()方法清除测试中产生的数据,为以后的TestCase留下一个干净的环境。我们需要在测试类中编写以test_开头的测试函数,unnitest会在测试中自动执行以test_开头的测试函数,unnitest的使用框架:
import unittest
class XXXXX(unittest.TestCase):
def setUp(self):
# 自行编写
pass
if __name__ == '__main__':
unittest.main()
参考文献:
https://docs.python.org/2/library/unittest.html
对离散HMM模型的测试代码
# 计算平方误差
def s_error(A, B):
return sqrt(np.sum((A-B)*(A-B)))/np.sum(B)
class DiscreteHMM_Test(unittest.TestCase):
def setUp(self):
# 建立两个HMM,隐藏状态个数为4,X可能分布为10类
n_state =4
n_feature = 10
X_length = 1000
n_batch = 100 # 批量数目
self.n_batch = n_batch
self.X_length = X_length
self.test_hmm = hmm.DiscreteHMM(n_state, n_feature)
self.comp_hmm = ContrastHMM(n_state, n_feature)
self.X, self.Z = self.comp_hmm.module.sample(self.X_length*10)
self.test_hmm.train(self.X, self.Z)
def test_train_batch(self):
X = []
Z = []
for b in range(self.n_batch):
b_X, b_Z = self.comp_hmm.module.sample(self.X_length)
X.append(b_X)
Z.append(b_Z)
batch_hmm = hmm.DiscreteHMM(self.test_hmm.n_state, self.test_hmm.x_num)
batch_hmm.train_batch(X, Z)
# 判断概率参数是否接近
# 初始概率判定没有通过!!!
self.assertAlmostEqual(s_error(batch_hmm.start_prob, self.comp_hmm.module.startprob_), 0, 1)
self.assertAlmostEqual(s_error(batch_hmm.transmat_prob, self.comp_hmm.module.transmat_), 0, 1)
self.assertAlmostEqual(s_error(batch_hmm.emission_prob, self.comp_hmm.module.emissionprob_), 0, 1)
def test_train(self):
# 判断概率参数是否接近
# 单批量的初始概率一定是不准的
# self.assertAlmostEqual(s_error(self.test_hmm.start_prob, self.comp_hmm.module.startprob_), 0, 1)
self.assertAlmostEqual(s_error(self.test_hmm.transmat_prob, self.comp_hmm.module.transmat_), 0, 1)
self.assertAlmostEqual(s_error(self.test_hmm.emission_prob, self.comp_hmm.module.emissionprob_), 0, 1)
def test_X_prob(self):
X,_ = self.comp_hmm.module.sample(self.X_length)
prob_test = self.test_hmm.X_prob(X)
prob_comp = self.comp_hmm.module.score(X)
self.assertAlmostEqual(s_error(prob_test, prob_comp), 0, 1)
def test_predict(self):
X, _ = self.comp_hmm.module.sample(self.X_length)
prob_next = self.test_hmm.predict(X,np.random.randint(0,self.test_hmm.x_num-1))
self.assertEqual(prob_next.shape,(self.test_hmm.n_state,))
def test_decode(self):
X,_ = self.comp_hmm.module.sample(self.X_length)
test_decode = self.test_hmm.decode(X)
_, comp_decode = self.comp_hmm.module.decode(X)
self.assertAlmostEqual(s_error(test_decode, comp_decode), 0, 1)
if __name__ == '__main__':
unittest.main()
2、hmmlearn产生HMM模型
利用hmmlearn初始化一个高斯HMM模型
class ContrastHMM():
def __init__(self, n_state, n_feature):
self.module = hmmlearn.hmm.GaussianHMM(n_components=n_state,covariance_type="full")
# 初始概率
self.module.startprob_ = np.random.random(n_state)
self.module.startprob_ = self.module.startprob_ / np.sum(self.module.startprob_)
# 转换概率
self.module.transmat_ = np.random.random((n_state,n_state))
self.module.transmat_ = self.module.transmat_ / np.repeat(np.sum(self.module.transmat_, 1),n_state).reshape((n_state,n_state))
# 高斯发射概率
self.module.means_ = np.random.random(size=(n_state,n_feature))*10
self.module.covars_ = .5 * np.tile(np.identity(n_feature), (n_state, 1, 1))
利用hmmlearn初始化一个离散HMM模型
class ContrastHMM():
def __init__(self, n_state, n_feature):
self.module = hmmlearn.hmm.MultinomialHMM(n_components=n_state)
# 初始概率
self.module.startprob_ = np.random.random(n_state)
self.module.startprob_ = self.module.startprob_ / np.sum(self.module.startprob_)
# print self.module.startprob_
# 转换概率
self.module.transmat_ = np.random.random((n_state,n_state))
self.module.transmat_ = self.module.transmat_ / np.repeat(np.sum(self.module.transmat_, 1),n_state).reshape((n_state,n_state))
# print self.module.transmat_
# 发射概率
self.module.emissionprob_ = np.random.random(size=(n_state,n_feature))
self.module.emissionprob_ = self.module.emissionprob_ / np.repeat(np.sum(self.module.emissionprob_, 1),n_feature).reshape((n_state,n_feature))
# print self.module.emissionprob_
PS:
项目说明:http://blog.csdn.net/tostq/article/details/70846702
代码下载:https://github.com/tostq/Easy_HMM (点星是对作者最好的支持!!!^_^)
以上是关于深度剖析HMM(附Python代码)4.HMM代码测试及hmmlearn介绍的主要内容,如果未能解决你的问题,请参考以下文章
深度剖析HMM(附Python代码)2.隐马尔科夫链HMM的EM训练过程
深度剖析HMM(附Python代码)3.隐马尔科夫链所解决的问题