运筹系列75:LKH核心代码的python实现
Posted IE06
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了运筹系列75:LKH核心代码的python实现相关的知识,希望对你有一定的参考价值。
参考LKH_report实现,完整代码见:https://github.com/zctu/LKH_python,还原批评指正。
1. mst1tree模块
这个模块是输入距离矩阵c和pi值,给出mst1tree。
有两种方式:
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import minimum_spanning_tree
# mst算法可以替换为自己实现
# 根据LKH的c代码实现
def getLT1(c,pi):
c = (c.T+pi).T+pi
sec_dist = np.hstack(np.sort(c)[:,2:3]) # 这里可以优化
mst = minimum_spanning_tree(csr_matrix(c))
r = mst.toarray()
v = np.sum(abs(r)>0,axis=0)+np.sum(abs(r)>0,axis=1)-2
return np.sum(r)-2*sum(pi)+max((v<0)*sec_dist)
# 这种方式是根据LKH report实现
def getLT2(c,pi):
max_v = 0
for k in range(len(c)):
trans = np.hstack([k,np.arange(k),np.arange(k+1,len(distA))])
nc = c[trans,:][:,trans]
nc = (nc.T+pi).T+pi
i,j = np.argpartition(nc[0][1:], 2)[:2]
mst = minimum_spanning_tree(csr_matrix(nc[1:,1:]))
r = mst.toarray()
v = np.sum(r)+nc[0][i+1]+nc[0][j+1]-2*np.sum(pi)
if v>max_v:max_v = v
return max_v
其中minimum_spanning_tree模块,可以使用prim算法自己实现,cpu上性能和scipy差不多。
from numba import njit
@njit
def prim(matrix):
n = len(matrix)
non_matrix = np.zeros_like(matrix)
v = np.zeros(n)
v[0] = 1
while sum(v) < n:
mst_len = np.inf
for i in np.arange(n):
if v[i] > 0:
for j in np.arange(i,n):
if v[j] == 0:
if matrix[i][j] < mst_len:
mst_len = matrix[i][j]
bi = i
bj = j
v[bj] = 1
non_matrix[bi][bj] = matrix[bi][bj]
return non_matrix
2. ascent模块
这个模块使用梯度下降法给出最后的pi值,首先给出个简单的版本:
def ascent_simple(c):
pi = np.zeros(len(c))
t = np.ones(len(c))
best_w, v = getLT(c, pi)
period = max(len(c)//2, 100)
for k in range(period):
w, v = getLT(c, pi+t*v)
if sum(abs(v)) == 0:
return w, pi+t*v
elif w > best_w:
best_w = w
pi += t*v
else:
t /= 2
return best_w, pi
接下来是按照LKH_report的逻辑进行补全的版本,如下。这里去掉了initialPhase的判断。
def ascent(c):
pi = np.zeros(len(c), int)
t = 1
best_w, v = getLT(c, pi)
best_deg = np.sum(np.abs(v)) #np.sum(v*v)
last_v = v
period = max(len(c)//2, 100)
while period > 0 and t > 0.5:
period_continue = False
for k in range(period):
for i in range(len(v)):
if v[i] == 0:
last_v[i] = 0
pi = pi+t*(0.7*v+0.3*last_v)
last_v = v
w, v = getLT(c, pi)
deg = np.sum(np.abs(v))#np.sum(v*v)
if sum(abs(v)) == 0:
logger.info("* T = %d, Period = %d, BestW = %.1f, Norm = %d" % (t, period, w, deg))
return w, pi
elif w > best_w or (w == best_w and deg < best_deg):
logger.info("* T = %d, Period = %d, BestW = %.1f, Norm = %d" % (t, period, w, deg))
best_w = w
best_deg = deg
t *= 2
if k == period-1:
period_continue = True
else:
logger.info(" T = %d, Period = %d, BestW = %.1f, Norm = %d" % (t, period, w,deg))
if k > period /2:
t = t*3/4
break
if not period_continue:
t = t/2
period //= 2
return best_w, pi
3. generateCandidate模块
ascent模块给出来最佳的pi值,接下来用递推方式计算α-nearess值,以及生成candidate set。代码如下:
def geneCandidate(r, c, first_node):
# 首先要将树结构用suc和dad两个数组保存下来,mst是用来遍历树的堆栈
x, y = np.where(r > 0)
alpha = c.copy()
beta = np.zeros_like(c)
for i in range(len(x)):
beta[x[i]][y[i]] = beta[y[i]][x[i]] = c[y[i]][x[i]]
neighbour = beta > 0
suc = [0]
dad = 0: None
mst = [0]
heapq.heapify(mst)
uv = set(range(len(c)))
while len(mst) > 0:
j = mst.pop()
uv.remove(j)
for nj in np.where(neighbour[j])[0]:
if nj in uv:
mst.append(nj)
dad[nj] = j
suc.append(nj)
# 迭带所有的边
for idx, i in enumerate(suc):
if i == first_node:
for jdx, j in enumerate(suc):
if i == j or j == first_node:
continue
if j == dad[i] or i == dad[j]:
alpha[i][j] = alpha[j][i] = 0
else:
second_cost = np.sort(c[i])[2]
alpha[i][j] = alpha[j][i] = c[i][j] - second_cost
else:
for jdx, j in enumerate(suc):
if idx >= jdx or j == first_node:
continue
if j == dad[i] or i == dad[j]:
alpha[i][j] = alpha[j][i] = 0
else:
beta[i][j] = beta[j][i] = max(beta[i][dad[j]], c[j][dad[j]])
alpha[i][j] = alpha[j][i] = c[i][j] - beta[i][j]
candidate_index = np.argpartition(alpha, max_candicate)[:max_candicate]
return alpha, candidate_index
4. LinKernighan
这里仅放出简化版本,不使用Candidate,而是按顺序遍历所有点位。
def LKH(c, t):
n = len(t)
max_swaps = len(t) # 在没有优化的情况下,最多允许swap的次数
for i in range(n): # 探索第一个点位
nt = t.copy()
x1 = (nt[i], nt[(i + 1) % n])
G0 = c[x1[0]][x1[1]]
for swaps in range(max_swaps):
nt, G0, G, j = bestOptMove(c, i, G0, nt) # 探索第二个点位
if G > 0.01:
return nt, G
return t, 0
探索第二个点位的bestOptMove如下:
def bestOptMove(c, i, G0, t):
n = len(t)
best_g2 = -np.inf
best_j = -1
for j in np.arange(n): # 第二个点位也是按顺序遍历
if (i + 1) % n != j and i != j and (i - 1) != j and (j + 1) % n != i:
y1 = (t[(i + 1) % n], t[(j + 1) % n])
G1 = G0 - c[y1[0]][y1[1]]
if G1 > 0: # 探索条件:正收益原则
x2 = (t[(j + 1) % n], t[j])
y2 = (t[j], t[i])
G2 = G1 + c[x2[0]][x2[1]]
G = G2 - c[y2[0]][y2[1]]
if G > 0.01: # 一旦找到优化的解,立即返回
t = TwoOptMove(i, j, t)
return t, G2, G, j
if G2 > best_g2:
best_g2 = G2
best_j = j
# 所有的j都不符合条件时,原样返回
if best_j == -1:
return t, G0, 0, -1
# 如果符合正收益原则的所有j都探索完都没有优化,那么选择其中最佳的j尝试进行swap
return TwoOptMove(i, best_j, t), best_g2, 0, best_j
接下来是数组版本的边交换代码:
def TwoOptMove(i, j, t):
n = len(t)
if i < j:
t[i + 1:j + 1] = t[i + 1:j + 1][::-1]
else:
temp = np.zeros(n + j - i, np.int32)
temp[:n - i - 1] = t[i + 1:]
temp[n - i - 1:] = t[:j + 1]
temp = temp[::-1]
t[i + 1:] = temp[:n - i - 1]
t[:j + 1] = temp[n - i - 1:]
return t
以上是关于运筹系列75:LKH核心代码的python实现的主要内容,如果未能解决你的问题,请参考以下文章
重新发布|《运筹优化常用模型算法及案例实战:Python+Java实现》 代码手册 开始预购啦!!!