场景应用:如何解决Redis主从同步中出现的问题?
Posted 流楚丶格念
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了场景应用:如何解决Redis主从同步中出现的问题?相关的知识,希望对你有一定的参考价值。
文章目录
我们一个问题一个问题的看:
主从数据不一致的问题?
我们先思考下为什么会出现主从数据不一致?
主从数据不一致,就是指客户端从从节点中读取到的值和主节点中的最新值并不一致。
之所以会出现主从数据不一致的现象,是因为主从节点间的命令复制是异步进行的,所以无法实现强一致性保证(注意:这里是强一致性,指的是主从数据时时刻刻保持一致,我们的主从同步是可以达到的是最终一致性)。
具体来说,在主从节点命令传播阶段,主节点收到新的写命令后,会发送给从节点。
但是,主节点并不会等到从节点实际执行完命令后,再把结果返回给客户端,而是主节点自己在本地执行完命令后,就会向客户端返回结果了。如果从节点还没有执行主节点同步过来的命令,主从节点间的数据就不一致了。
那么我们如何应对主从数据不一致的问题(但我们没办法彻底解决,只能减低问题的严重程度)?
第一种方法,尽量保证主从节点间的网络连接状况良好,避免主从节点在不同的机房。
第二种方法,可以开发一个外部程序来监控主从节点间的复制进度。具体做法:
- Redis 的 INFO replication 命令可以查看主节点接收写命令的进度信息(master_repl_offset)和从节点复制写命令的进度信息(slave_repl_offset),所以,我们就可以开发一个监控程序,先用 INFO replication 命令查到主、从节点的进度,然后,我们用 master_repl_offset 减去 slave_repl_offset,这样就能得到从节点和主节点间的复制进度差值了。
- 如果某个从节点的进度差值大于我们预设的阈值,我们可以让客户端不再和这个从节点连接进行数据读取,这样就可以减少读到不一致数据的情况。不过,为了避免出现客户端和所有从节点都不能连接的情况,我们需要把复制进度差值的阈值设置得大一些。
主从如何做到故障自动切换的问题?
一开始,主节点挂了 ,从节点是无法自动升级为主节点的,这个过程需要人工处理,在此期间 Redis 无法对外提供写操作。
那么能不能让他自动检测和切换呢?
此时,Redis 哨兵机制就登场了,哨兵在发现主节点出现故障时,由哨兵自动完成故障发现和故障转移,并通知给应用方,从而实现高可用性。
哨兵机制如下所示:
Redis Sentinel(哨兵)是一个分布式架构,它包含若干个哨兵节点和数据节点。每个哨兵节点会对数据节点和其余的哨兵节点进行监控,当发现节点不可达时,会对节点做下线标识。如果被标识的是主节点,它就会与其他的哨兵节点进行协商,当多数哨兵节点都认为主节点不可达时,它们便会选举出一个哨兵节点来完成自动故障转移的工作,同时还会将这个变化实时地通知给应用方。整个过程是自动的,不需要人工介入,有效地解决了Redis的主从自动切换的问题(同样也是解决了高可用的问题)!
一组哨兵可以监控一个主节点,也可以同时监控多个主节点,两种情况的拓扑结构如下图:
刚说完切换,那么在切换时,就会产生数据的丢失问题,那么:
主从切换时,如何减少数据丢失的问题?
主从切换过程中,产生数据丢失的情况有两种:
- 异步复制同步丢失
- 集群产生脑裂数据丢失
同样,我们不可能保证数据完全不丢失,只能做到使得尽量少的数据丢失。
异步复制同步丢失
Redis 主节点与从节点之间的数据复制,是异步复制的,在异步的过程当中是可能发生数据丢失的,比如:
- 当客户端发送写请求给主节点的时候,客户端会返回 ok,接着主节点将写请求异步同步给各个从节点,但是如果此时主节点还没来得及同步给从节点时发生了断电,那么主节点内存中的数据会丢失。
减少异步复制的数据丢失的方案如下:
Redis 配置里有一个参数 min-slaves-max-lag
,表示一旦所有的从节点数据复制和同步的延迟都超过了 min-slaves-max-lag
定义的值,那么主节点就会拒绝接收任何请求。
假设将 min-slaves-max-lag
配置为 10s 后,根据目前 master->slave
的复制速度,如果数据同步完成所需要时间超过10s,就会认为 master 未来宕机后损失的数据会很多,master 就拒绝写入新请求。这样就能将 master 和 slave 数据差控制在10s内,即使 master 宕机也只是这未复制的 10s 数据。
那么对于客户端,当客户端发现 master 不可写后,我们可以采取降级措施,将数据暂时写入本地缓存和磁盘中,在一段时间(等 master 恢复正常)后重新写入 master 来保证数据不丢失,也可以将数据写入 kafka 消息队列,等 master 恢复正常,再隔一段时间去消费 kafka 中的数据,让将数据重新写入 master 。
集群产生脑裂数据丢失
什么是脑裂:集群的脑裂现象,这就好比一个人有两个大脑,那么集群到底是受谁控制呢
那么在 Redis 中,集群脑裂产生数据丢失的现象是怎样的呢,比如:
- 由于网络问题,集群节点之间失去联系。主从数据不同步;重新平衡选举,产生两个主服务。等网络恢复,旧主节点会降级为从节点,再与新主节点进行同步复制的时候,由于会从节点会清空自己的缓冲区,所以导致之前客户端写入的数据丢失了。
减少脑裂的数据丢的方案:
当主节点发现从节点下线或者通信超时的总数量小于阈值时,那么禁止主节点进行写数据,直接把错误返回给客户端。
具体做法为:
在 Redis 的配置文件中有两个参数我们可以设置:
- min-slaves-to-write x,主节点必须要有至少 x 个从节点连接,如果小于这个数,主节点会禁止写数据。
- min-slaves-max-lag x,主从数据复制和同步的延迟不能超过 x 秒,如果超过,主节点会禁止写数据。
我们可以把 min-slaves-to-write 和 min-slaves-max-lag 这两个配置项搭配起来使用,分别给它们设置一定的阈值,假设为 N 和 T。
这两个配置项组合后的要求是,主节点连接的从节点中至少有 N 个从节点,「并且」主节点进行数据复制时的 ACK 消息延迟不能超过 T 秒,否则,主节点就不会再接收客户端的写请求了。
即使原主节点是假故障,它在假故障期间也无法响应哨兵心跳,也不能和从节点进行同步,自然也就无法和从节点进行 ACK 确认了。这样一来,min-slaves-to-write 和 min-slaves-max-lag 的组合要求就无法得到满足,原主节点就会被限制接收客户端写请求,客户端也就不能在原主节点中写入新数据了。
等到新主节点上线时,就只有新主节点能接收和处理客户端请求,此时,新写的数据会被直接写到新主节点中。而原主节点会被哨兵降为从节点,即使它的数据被清空了,也不会有新数据丢失。我再来给你举个例子。
假设我们将 min-slaves-to-write 设置为 1,把 min-slaves-max-lag 设置为 12s,把哨兵的 down-after-milliseconds 设置为 10s,主节点因为某些原因卡住了 15s,导致哨兵判断主节点客观下线,开始进行主从切换。同时,因为原主节点卡住了 15s,没有一个从节点能和原主节点在 12s 内进行数据复制,原主节点也无法接收客户端请求了。这样一来,主从切换完成后,也只有新主节点能接收请求,不会发生脑裂,也就不会发生数据丢失的问题了。
以上是关于场景应用:如何解决Redis主从同步中出现的问题?的主要内容,如果未能解决你的问题,请参考以下文章