Redis之持久化主从哨兵及分片集群

Posted Henrik-Yao

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Redis之持久化主从哨兵及分片集群相关的知识,希望对你有一定的参考价值。

文章目录

单点Redis的问题

  • 数据丢失问题:Redis是内存存储,服务重启可能会丢失数据
  • 并发能力问题:单节点Redis并发能力虽然不错,但也无法满足如618这样的高并发场景
  • 故障恢复问题:如果Redis宕机,则服务不可用,需要一种自动的故障恢复手段
  • 存储能力问题:Redis基于内存,单节点能存储的数据量难以满足海量数据需求

一.Redis持久化

1.RDB持久化

RDB全称Redis Database Backup file(Redis数据备份文件),也被叫做Redis数据快照。简单来说就是把内存中的所有数据都记录到磁盘中。当Redis实例故障重启后,从磁盘读取快照文件,恢复数据。
快照文件称为RDB文件,默认是保存在当前运行目录

Redis内部有触发RDB的机制,可以在redis.conf文件中找到,格式如下

# 900秒内,如果至少有1个key被修改,则执行bgsave
# 如果是save "" 则表示禁用RDB
save 900 1  

RDB的其它配置也可以在redis.conf文件中设置

# 是否压缩 ,建议不开启,压缩也会消耗cpu,磁盘的话不值钱
rdbcompression yes

# RDB文件名称
dbfilename dump.rdb  

# 文件保存的路径目录
dir ./ 

bgsave开始时会fork主进程得到子进程,子进程共享主进程的内存数据
完成fork后读取内存数据并写入 RDB 文件
fork采用的是copy-on-write技术:

  1. 当主进程执行读操作时,访问共享内存
  2. 当主进程执行写操作时,则会拷贝一份数据,执行写操作


RDB的缺点:

  • RDB执行间隔时间长,两次RDB之间写入数据有丢失的风险
  • fork子进程、压缩、写出RDB文件都比较耗时

2.AOF持久化

AOF全称为Append Only File(追加文件)。Redis处理的每一个写命令都会记录在AOF文件,可以看做是命令日志文件


AOF默认是关闭的,需要修改redis.conf配置文件来开启AOF:

# 是否开启AOF功能,默认是no
appendonly yes
# AOF文件的名称
appendfilename "appendonly.aof"

AOF的命令记录的频率也可以通过redis.conf文件来配:

# 表示每执行一次写命令,立即记录到AOF文件
appendfsync always 
# 写命令执行完先放入AOF缓冲区,然后表示每隔1秒将缓冲区数据写到AOF文件,是默认方案
appendfsync everysec 
# 写命令执行完先放入AOF缓冲区,由操作系统决定何时将缓冲区内容写回磁盘
appendfsync no


因为是记录命令,AOF文件会比RDB文件大的多。而且AOF会记录对同一个key的多次写操作,但只有最后一次写操作才有意义。通过执行bgrewriteaof命令,可以让AOF文件执行重写功能,用最少的命令达到相同效果


Redis也会在触发阈值时自动去重写AOF文件。阈值也可以在redis.conf中配置:

# AOF文件比上次文件 增长超过多少百分比则触发重写
auto-aof-rewrite-percentage 100
# AOF文件体积最小多大以上才触发重写 
auto-aof-rewrite-min-size 64mb 

3.对比

RDB和AOF各有自己的优缺点,如果对数据安全性要求较高,在实际开发中往往会结合两者来使用

二.Redis主从

1.主从架构

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离

2.主从同步

主从第一次同步是全量同步

slave做数据同步,必须向master声明自己的replication id 和offset,master才可以判断到底需要同步哪些数据

  • Replication Id:简称replid,是数据集的标记,id一致则说明是同一数据集。每一个master都有唯一的replid,slave则会继承master节点的replid
  • offset:偏移量,随着记录在repl_baklog中的数据增多而逐渐增大。slave完成同步时也会记录当前同步的offset。如果slave的offset小于master的offset,说明slave数据落后于master,需要更新

全量同步的流程:

  • slave节点请求增量同步
  • master节点判断replid,发现不一致,拒绝增量同步
  • master将完整内存数据生成RDB,发送RDB到slave
  • slave清空本地数据,加载master的RDB
  • master将RDB期间的命令记录在repl_baklog,并持续将log中的命令发送给slave
  • slave执行接收到的命令,保持与master之间的同步

主从第一次同步是全量同步,但如果slave重启后同步,则执行增量同步

repl_baklog大小有上限,写满后会覆盖最早的数据。如果slave断开时间过久,导致尚未备份的数据被覆盖,则无法基于log做增量同步,只能再次全量同步

主从同步优化

  • 在master中配置repl-diskless-sync yes启用无磁盘复制,避免全量同步时的磁盘IO。
  • Redis单节点上的内存占用不要太大,减少RDB导致的过多磁盘IO
  • 适当提高repl_baklog的大小,发现slave宕机时尽快实现故障恢复,尽可能避免全量同步
  • 限制一个master上的slave节点数量,如果实在是太多slave,则可以采用主-从-从链式结构,减少master压力

全量同步和增量同步区别

  • 全量同步:master将完整内存数据生成RDB,发送RDB到slave。后续命令则记录在repl_baklog,逐个发送给slave
  • 增量同步:slave提交自己的offset到master,master获取repl_baklog中从offset之后的命令给slave

全量同步执行时间

  • slave节点第一次连接master节点时
  • slave节点断开时间太久,repl_baklog中的offset已经被覆盖时

增量同步执行时间

  • slave节点断开又恢复,并且在repl_baklog中能找到offset时

三.Redis哨兵

1.哨兵作用及原理

哨兵作用

Redis提供了哨兵(Sentinel)机制来实现主从集群的自动故障恢复。哨兵的结构和作用如下:

  • 监控:Sentinel 会不断检查您的master和slave是否按预期工作
  • 自动故障恢复:如果master故障,Sentinel会将一个slave提升为master。当故障实例恢复后也以新的master为主
  • 通知:Sentinel充当Redis客户端的服务发现来源,当集群发生故障转移时,会将最新信息推送给Redis的客户端


服务状态监控

Sentinel基于心跳机制监测服务状态,每隔1秒向集群的每个实例发送ping命令:

  • 主观下线:如果某sentinel节点发现某实例未在规定时间响应,则认为该实例主观下线。
  • 客观下线:若超过指定数量(quorum)的sentinel都认为该实例主观下线,则该实例客观下线。quorum值最好超过Sentinel实例数量的一半


选举新的master

一旦发现master故障,sentinel需要在salve中选择一个作为新的master,选择依据是这样的:

  • 首先会判断slave节点与master节点断开时间长短,如果超过指定值(down-after-milliseconds * 10)则会排除该slave节点
  • 然后判断slave节点的slave-priority值,越小优先级越高,如果是0则永不参与选举
  • 如果slave-prority一样,则判断slave节点的offset值,越大说明数据越新,优先级越高
  • 最后是判断slave节点的运行id大小,越小优先级越高。

故障转移

当选中了其中一个slave为新的master后(例如slave1),故障的转移的步骤如下:

  • sentinel给备选的slave1节点发送slaveof no one命令,让该节点成为master
  • sentinel给所有其它slave发送slaveof 192.168.150.101 7002 命令,让这些slave成为新master的从节点,开始从新的master上同步数据。
  • 最后,sentinel将故障节点标记为slave,当故障节点恢复后会自动成为新的master的slave节点

四.Redis分片集群

1.分片集群结构

主从和哨兵可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:

  • 海量数据存储问题
  • 高并发写的问题

使用分片集群可以解决上述问题,分片集群特征:

  • 集群中有多个master,每个master保存不同数据
  • 每个master都可以有多个slave节点
  • master之间通过ping监测彼此健康状态
  • 客户端请求可以访问集群任意节点,最终都会被转发到正确节点

2.散列插槽

Redis会把每一个master节点映射到0~16383共16384个插槽(hash slot)上,查看集群信息时就能看到:

数据key不是与节点绑定,而是与插槽绑定。redis会根据key的有效部分计算插槽值,分两种情况:
key中包含"",且“”中至少包含1个字符,“”中的部分是有效部分
key中不包含“”,整个key都是有效部分
例如:key是num,那么就根据num计算,如果是itcastnum,则根据itcast计算。计算方式是利用CRC16算法得到一个hash值,然后对16384取余,得到的结果就是slot值。

如何将同一类数据固定的保存在同一个Redis实例?
这一类数据使用相同的有效部分,例如key都以typeId为前缀

3.集群伸缩

添加一个节点到集群

redis-cli --cluster提供了很多操作集群的命令,可以通过下面方式查看:


比如,添加节点的命令:

4.故障转移

当集群中有一个master宕机会发生什么呢?
首先是该实例与其它实例失去连接
然后是疑似宕机:

最后是确定下线,自动提升一个slave为新的master:

手动故障转移

利用cluster failover命令可以手动让集群中的某个master宕机,切换到执行cluster failover命令的这个slave节点,实现无感知的数据迁移。其流程如下:


手动的Failover支持三种不同模式:

  • 缺省:默认的流程,如图1~6歩
  • force:省略了对offset的一致性校验
  • takeover:直接执行第5歩,忽略数据一致性、忽略master状态和其它master的意见

以上是关于Redis之持久化主从哨兵及分片集群的主要内容,如果未能解决你的问题,请参考以下文章

Redis单机,主从集群,哨兵集群,分片集群的搭建

Redis单机,主从集群,哨兵集群,分片集群的搭建

Redis个人笔记:Redis应用场景,Redis常见命令,Reids缓存击穿穿透,Redis分布式锁实现方案,秒杀设计思路,Redis消息队列,Reids持久化,Redis主从哨兵分片集群

Redis分片主从哨兵集群,原理详解,集群的配置安装,8大数据类型,springboot整合使用

Redis分片主从哨兵集群,原理详解,集群的配置安装,8大数据类型,springboot整合使用

分布式缓存