欧拉回路求路径POJ 2230

Posted q1143316492

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了欧拉回路求路径POJ 2230相关的知识,希望对你有一定的参考价值。

Watchcow
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 8841   Accepted: 3854   Special Judge

Description

Bessie‘s been appointed the new watch-cow for the farm. Every night, it‘s her job to walk across the farm and make sure that no evildoers are doing any evil. She begins at the barn, makes her patrol, and then returns to the barn when she‘s done. 

If she were a more observant cow, she might be able to just walk each of M (1 <= M <= 50,000) bidirectional trails numbered 1..M between N (2 <= N <= 10,000) fields numbered 1..N on the farm once and be confident that she‘s seen everything she needs to see. But since she isn‘t, she wants to make sure she walks down each trail exactly twice. It‘s also important that her two trips along each trail be in opposite directions, so that she doesn‘t miss the same thing twice. 

A pair of fields might be connected by more than one trail. Find a path that Bessie can follow which will meet her requirements. Such a path is guaranteed to exist.

Input

* Line 1: Two integers, N and M. 

* Lines 2..M+1: Two integers denoting a pair of fields connected by a path.

Output

* Lines 1..2M+1: A list of fields she passes through, one per line, beginning and ending with the barn at field 1. If more than one solution is possible, output any solution.

Sample Input

4 5
1 2
1 4
2 3
2 4
3 4

Sample Output

1
2
3
4
2
1
4
3
2
4
1


代码分为递归和非递归版本,POJ磁盘满了代码还没交过。。。2018-6-18



技术分享图片
 1 #include <cstdio>
 2 #include <cstring>
 3 #include <iostream>
 4 #include <algorithm>
 5 #include <stack>
 6 
 7 using namespace std;
 8 const int MAXN = 1e4 + 7;
 9 const int MAXM = 5e4 + 7;
10 
11 int n, m, first[MAXN], sign, vis[MAXN];
12 
13 struct Edge {
14     int to, w, next;
15 } edge[MAXM * 4];
16 
17 inline void init() {
18     for(int i = 0; i <= n; i++ ) {
19         first[i] = -1;
20         vis[i] = 0;
21     }
22     sign = 0;
23 }
24 
25 inline void add_edge(int u, int v, int w) {
26     edge[sign].to = v;
27     edge[sign].w = w;
28     edge[sign].next = first[u];
29     first[u] = sign++;
30 }
31 
32 void dfs(int x) {
33     for(int i = first[x]; ~i; i = edge[i].next) {
34         int to = edge[i].to;
35         if(!vis[i]) {
36             vis[i] = 1;
37             dfs(to);
38         }
39     }
40     printf("%d
", x);
41 }
42 
43 int main()
44 {
45     while(~scanf("%d %d", &n, &m)) {
46         init();
47         for(int i = 1; i <= m; i++ ) {
48             int u, v;
49             scanf("%d %d", &u, &v);
50             add_edge(u, v, 1);
51             add_edge(v, u, 1);
52         }
53         dfs(1);
54     }
55 
56     return 0;
57 }
View Code

 

技术分享图片
 1 #include <cstdio>
 2 #include <cstring>
 3 #include <iostream>
 4 #include <algorithm>
 5 #include <stack>
 6 
 7 using namespace std;
 8 const int MAXN = 1e4 + 7;
 9 const int MAXM = 5e4 + 7;
10 
11 int n, m, first[MAXN], sign, vis[MAXN];
12 
13 struct Edge {
14     int to, w, next;
15 } edge[MAXM * 4];
16 
17 inline void init() {
18     for(int i = 0; i <= n; i++ ) {
19         first[i] = -1;
20         vis[i] = 0;
21     }
22     sign = 0;
23 }
24 
25 inline void add_edge(int u, int v, int w) {
26     edge[sign].to = v;
27     edge[sign].w = w;
28     edge[sign].next = first[u];
29     first[u] = sign++;
30 }
31 
32 stack<int>st, ans;
33 
34 void eulur(int start) {
35     while(!st.empty()) {
36         st.pop();
37     }
38     while(!ans.empty()) {
39         ans.pop();
40     }
41     st.push(start);
42     while(!st.empty()) {
43         int x = st.top(), i = first[x];
44         while(~i && vis[i]) {
45             i = edge[i].next;
46         }
47         if(~i) {
48             st.push(edge[i].to);
49             //vis[i] = vis[i ^ 1] = 1;
50             vis[i] = 1;
51             first[x] = edge[i].next;
52         } else {
53             st.pop();
54             ans.push(x);
55         }
56     }
57 }
58 
59 
60 int main()
61 {
62     while(~scanf("%d %d", &n, &m)) {
63         init();
64         for(int i = 1; i <= m; i++ ) {
65             int u, v;
66             scanf("%d %d", &u, &v);
67             add_edge(u, v, 1);
68             add_edge(v, u, 1);
69         }
70         eulur(1);
71         while(!ans.empty()) {
72             printf("%d
", ans.top());
73             ans.pop();
74         }
75     }
76 
77     return 0;
78 }
View Code

 




以上是关于欧拉回路求路径POJ 2230的主要内容,如果未能解决你的问题,请参考以下文章

POJ2230 Watchcow - 欧拉回路

POJ2230(打印欧拉回路)

poj2230 Watchcow(欧拉回路)

POJ2230Watchcow

POJ 2230 Watchcow

[poj2337]求字典序最小欧拉回路