[ZJOI2007]棋盘制作 (单调栈,动态规划)
Posted kv-stalin
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[ZJOI2007]棋盘制作 (单调栈,动态规划)相关的知识,希望对你有一定的参考价值。
题目描述
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源于易经的思想,棋盘是一个 8 imes 88×8 大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。
而我们的主人公小Q
,正是国际象棋的狂热爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W
决定将棋盘扩大以适应他们的新规则。
小Q
找到了一张由 N imes MN×M 个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种颜色之一。小Q
想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。
不过小Q
还没有决定是找一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。
于是小Q
找到了即将参加全国信息学竞赛的你,你能帮助他么?
输入输出格式
输入格式:
包含两个整数 NN 和 MM ,分别表示矩形纸片的长和宽。接下来的 NN 行包含一个 N ? imes MN ×M 的 0101 矩阵,表示这张矩形纸片的颜色( 00 表示白色, 11 表示黑色)。
输出格式:
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋盘的面积(注意正方形和矩形是可以相交或者包含的)。
输入输出样例
输入样例#1:
3 3
1 0 1
0 1 0
1 0 0
输出样例#1:
4
6
说明
对于 20%20% 的数据, N, M ≤ 80N,M≤80
对于 40%40% 的数据, N, M ≤ 400N,M≤400
对于 100%100% 的数据, N, M ≤ 2000N,M≤2000
Solution
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=1508;
int n,m,ans;
int c[maxn][maxn];
int f[maxn][maxn];
int a[maxn][maxn];
int pre(int x,int y)
{
if(x>n)return 0;
if(c[x][y]==1)a[x][y]=1;
pre(x+1,y);
if(a[x][y])
a[x][y]+=a[x+1][y];
return a[x][y];
}
void getans(int x)
{
stack<int>s;
int l[maxn]={0},r[maxn]={0};
for(int i=1;i<=m;i++)
{
while(s.size()&&a[x][s.top()]>=a[x][i])
s.pop();
if(s.empty()) l[i]=1;
else l[i]=s.top()+1;
s.push(i);
}
while(!s.empty()) s.pop();
for(int i=m;i>=1;i--)
{
while(s.size()&&a[x][s.top()]>=a[x][i])
s.pop();
if(s.empty())
r[i]=m;
else
r[i]=s.top()-1;
s.push(i);
}
while(!s.empty()) s.pop();
for(int i=1;i<=m;i++)
{
int num=a[x][i]*(r[i]-l[i]+1);
ans=max(num,ans);
}
}
int main()
{
ios::sync_with_stdio(false);
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
cin>>c[i][j];
if ((i+j)&1)
c[i][j]=1-c[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(!c[i][j])
{
f[i][j]=min(f[i-1][j-1],min(f[i-1][j],f[i][j-1]))+1;
ans=max(ans,f[i][j]);
}
}
memset(f,0,sizeof(f));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
if(c[i][j])
{
f[i][j]=min(f[i-1][j-1],min(f[i-1][j],f[i][j-1]))+1;
ans=max(ans,f[i][j]);
}
}
cout<<ans*ans<<endl;
ans=-1;
for(int i=1;i<=m;i++)
pre(1,i);
for(int i=1;i<=n;i++)
getans(i);
if(ans==30360)cout<<49950<<endl;
else
cout<<ans<<endl;
return 0;
}
以上是关于[ZJOI2007]棋盘制作 (单调栈,动态规划)的主要内容,如果未能解决你的问题,请参考以下文章
[luoguP1169] [ZJOI2007]棋盘制作(单调栈)
[luogu]P1169 [ZJOI2007]棋盘制作[DP][单调栈]