CV:计算机视觉技最强学习路线之CV简介(传统视觉技术/相关概念)早期/中期/近期应用领域(偏具体应用)经典CNN架构(偏具体算法)概述常用工具/库/框架/产品环境安装常用数据集编程技巧

Posted 一个处女座的程序猿

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CV:计算机视觉技最强学习路线之CV简介(传统视觉技术/相关概念)早期/中期/近期应用领域(偏具体应用)经典CNN架构(偏具体算法)概述常用工具/库/框架/产品环境安装常用数据集编程技巧相关的知识,希望对你有一定的参考价值。

CV:计算机视觉技最强学习路线之CV简介(传统视觉技术/相关概念)、早期/中期/近期应用领域(偏具体应用)、经典CNN架构(偏具体算法)概述、常用工具/库/框架/产品、环境安装、常用数据集、编程技巧

导读:计算机视觉技最强学习路线,博主花了三个晚上精心整理,终于结束了,真心不容易……希望能够对家学习计算机视觉技术有所帮助。

目录

计算机视觉技最强学习路线

1、CV市场岗位要求

Interview之CV:人工智能领域求职岗位—计算机视觉算法工程师的职位简介、薪资介绍、知识结构之详细攻略

Interview之ML:机器学习算法工程师结构知识思维导图集合、求职九大必备技能之【数学基础、特征工程能力、模型评估和优化、机器学习基本概念/经典算法、深度学习算法、业务与应用】(持续更新)

Interview之AI:人工智能领域岗位求职面试—人工智能算法工程师知识框架及课程大纲(AI基础之数学基础/数据结构与算法/编程学习基础、ML算法简介、DL算法简介)来理解技术交互流程

Interview之AI:深度学习算法工程师面试之常见专业知识考点(参数初始化策略(Lecun、Xavier/Glorot、Kaiming、基于BN的随机的参数初始化)、图像算法基础(ROI)

2、CV综合应用领域(自动驾驶等)

(1)、安防领域—疑犯追踪、视频结构化

(2)、金融及互联网领域—刷脸认证

(3)、手机及娱乐领域—影像分类/影像处理/AR特效

(4)、零售领域—商品识别

(5)、广告营销领域—自动化挖掘影像内容广告位

(6)、工业领域—产品质检/3D分拣

(7)、医疗领域—医疗影像分析

(8)、自动驾驶领域—环境感知/高精地图/定位

CV:无人驾驶/自动驾驶汽车中涉及的软硬件技术(摄像头、雷达、激光雷达)、计算机视觉技术(检测、分类、跟踪、语义分割)的简介

High&NewTech:基于人工智能的自动驾驶技术的前世今生之Why、What、How最强分析与总结(包括自动驾驶L5个分级详细标准,非常建议收藏)

(9)、无人机/机器人领域—环境感知/定位/自动避障

3、基本必备技能

(0)、AI基础概念术语

AI:人工智能领域之AI基础概念术语之《Google发布机器学习术语表 (中英对照)》——持续更新ML、DL相关概念2018年4月!

AI:人工智能领域之AI基础概念术语之机器学习、深度学习、数据挖掘中常见关键词、参数等5000多个单词中英文对照(绝对干货)

(1)、数学基础

ML与math:机器学习与高等数学基础概念、代码实现、案例应用之详细攻略——基础篇

ML与math:机器学习与高等数学基础概念、代码实现、案例应用之详细攻略——进阶篇

(2)、编程语言

Computer:少儿编程—每个人都应该学习编程,它能教你如何思考—编程入门的简介(编程语言的特点&种类&开发工具&对比人类语言)、编程应用、编程意义之详细攻略

Computer:C语言/C++语言的简介、发展历史、应用领域、编程语言环境IDE安装、学习路线之详细攻略

Python:Python语言的简介(语言特点/pyc介绍/Python版本语言兼容问题(python2 VS Python3))、安装、学习路线(数据分析/机器学习/网页爬等编程案例分析)之详细攻略

Matlab:Matlab编程语言的简介、安装、学习路线(几十项代码编程案例分析)之详细攻略

(3)、人工智能领域背景

AI:全球人工智能领域代表性学者简介及大佬们的关系圈—向大佬们学习(国外内分开,持续更新/建议收藏)

AI:人工智能领域之《A Simple Tool to Start Making Decisions with the Help of AI—借助人工智能开始决策的简单工具》翻译与解读

AI:人工智能领域主要方向(技术和应用)、与机器学习/深度学习的关系、数据科学关键技术与知识发现/数据挖掘/统计学/模式识别/神经计算学/数据库的关系(几张图理清之间的暧昧关系)

AI:人工智能领域之国内外人工智能产业应用图谱应用层/基础层详解—AI八大应用领域之医疗/家居/驾驶/零售/城市/教育/金融/交通、(AI三大基础(算法【计算机视觉/自然语言处理/机器学习、科研院所/开源社区】、数据【IOT/互联网/手机/传感器/音视频】、计算【计算芯片/服务器及存储器/AI软件框架/云服务】)

AI:人工智能领域算法思维导图集合之有监督学习/无监督学习/强化学习类型的具体算法简介(预测函数/优化目标/求解算法)、分类/回归/聚类/降维算法模型选择思路、11类机器学习算法详细分类之详细攻略

(4)、数字图像处理及OpenCV

(5)、CV相关的框架

AI:Python与人工智能相关的库/框架(机器学习&深度学习&数据科学/计算机视觉/自然语言处理)的简介、案例应用之详细攻略

4、计算机视觉算法工程师基本技能

一、计算机视觉的简介

二、计算机视觉相关概念简介

三、传统的计算机视觉技术之机器视觉/计算机图形学

四、CV早期、中期、近期具体应用领域(偏具体应用)及其应用案例

五、经典CNN算法(偏具体算法)简介及其应用案例

六、CV领域常用工具、库/框架、现有产品

七、CV计算机视觉环境安装

八、CV领域常用数据集

九、CV编程代码技巧

☆☆一、计算机视觉的简介

CV:人工智能之计算机视觉方向的简介(CV发展史+传统方法对比CNN类算法+CV类会议/期刊、主要研究方向)、计算机视觉四大研究方向以及十大具体应用领域(知识导图+经典案例)之详细攻略

☆☆二、计算机视觉相关概念简介

1、计算机视觉的语义鸿沟概念

(1)、跨越语义鸿沟的几大挑战

2、卷积概念

DL之DilatedConvolutions:Dilated Convolutions(膨胀卷积/扩张卷积)算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

DL之CNN:卷积神经网络算法简介之卷积矩阵、转置卷积(反卷积Transpose)、膨胀卷积(扩张卷积Dilated/带孔卷积atrous)之详细攻略

☆☆三、传统的计算机视觉技术之机器视觉/计算机图形学

1、基础知识

CV:传统视觉知识—机器视觉系统的基础知识(机器视觉三要素+典型的工业机器视觉系统五大组件

CV:计算机视觉技术之图像基础知识(一)—以python的cv2库来了解计算机视觉图像基础(傅里叶变换-频域-时域/各种滤波器-线性-非线性-均值-中值-高斯-双边)

CV:计算机视觉技术之图像基础知识(二)—以python的skimage和numpy库来了解计算机视觉图像基础(图像存储原理-模糊核-锐化核-边缘检测核,进阶卷积神经网络(CNN)的必备基础)

CV:计算机视觉技术之图像基础知识(二)—图像内核的九种卷积核可视化解释(blur/bottom sobel /emboss/identity /sobel /outline/sharpen)

CV:计算机视觉技术之图像基础知识—以python的cv2库来了解计算机视觉图像基础—视频操作相关案例及其代码实现(将多张图片存为视频/另存为avi视频/录制摄像头)

CV:计算机视觉技术之图像基础知识—以python的cv2库来了解计算机视觉图像基础(边缘检测算子+平滑+轮廓标注+形态学+金字塔+傅里叶变换)—代码实现

CV之HOG:图像特征提取之基于方向梯度直方图HOG算法的简介、代码实现(计算图像相似度)之详细攻略

2、像素检测

CV之cv2:基于python语言利用cv2库对几何形状图像边界进行识别检测并计算周长/面积以及输出颜色/形状类型之详细攻略

CV之FD之HOG:图像检测之基于HOG算法、简介、代码实现(计算图像相似度)之详细攻略

3、图形可视化

4、数据预处理

CV之FE:基于TF框架对图像进行数据预处理—去除异常(被损坏)图像 和单通道图像代码实现

CV:利用python的cv2库实现图像数据增强—随机裁剪、随机旋转、随机hsv变换、随机gamma变换代码实现

5、图像生成

Dataset之图片数据增强:设计自动生成汽车车牌图片算法(cv2+PIL)根据随机指定七个字符生成逼真车牌图片数据集(自然场景下+各种噪声效果)可视化

Dataset之图片数据增强:设计自动生成(高级封装之命令行解析实现)汽车车牌图片算法(cv2+PIL+argparse)根据随机指定七个字符生成逼真车牌图片(自然场景+各噪效果+对应txt说明文档)

Dataset之图片数据增强:设计自动生成(高级封装之命令行解析实现)汽车车牌图片算法(cv2+PIL+argparse)根据随机指定七个字符自动生成逼真车牌图片数据集(带各种噪声效果)

Dataset之图片数据增强:设计自动生成汽车车牌图片算法(cv2+PIL)根据指定七个字符自动生成逼真车牌图片数据集(带各种噪声效果)

6、其他相关技术(如SLAM)

CV之VSLAM:SLAM/VSLAM的简介、视觉SLAM的五大流程之详细攻略

☆☆四、CV早期、中期、近期具体应用领域(偏具体应用)及其应用案例

A、CV早期应用领域

1、OCR文字识别

MXNet之CNN:自定义CNN-OCR算法训练车牌数据集(umpy.ndarray格式数据)的模型实现一张新车牌照片字符预测

DL之CNN:基于CRNN_OCR算法(keras,CNN+RNN)利用数据集(torch,mdb格式)训练来实现新图片上不定长度字符串进行识别—预测过程

DL之CNN:利用CNN(keras, CTC loss, image_ocr)算法实现OCR光学字符识别

2、计算图像相似度

cv君个人整理学习路线视觉算法从入门到进阶

计算机视觉(CV)基于高层API实现宝石分类

计算机视觉(CV)sklearn之分类算法与手写数字识别

深度学习和计算机视觉(CV)介绍

CV学习资料《卷积神经网络与视觉计算》+《深度学习实践计算机视觉》+《视觉SLAM十四讲从理论到实践》电子资料代码分析

opencv3计算机视觉+Python