从零开始实现遗传算法(用遗传算法求解TSP)
Posted 风雪夜归子
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了从零开始实现遗传算法(用遗传算法求解TSP)相关的知识,希望对你有一定的参考价值。
声明:版权所有,转载请联系作者并注明出处: http://blog.csdn.net/u013719780?viewmode=contents
知乎专栏: https://www.zhihu.com/people/feng-xue-ye-gui-zi
本系列文章的所有源代码都将会开源,需要源代码的小伙伴可以去我的 Github fork!
前面我们用遗传算法动手做了两个实验,本篇文章我们再用遗传算法做一个实验:用遗传算法求解TSP。
在这个问题中,我们的个体就是一条一条的路线了,其目的就是找到一条总距离最短的路线。基本步骤与前两篇文章基本类似,不过在本问题中,我们用城市路线中每个城市的经纬度来表示个体(城市路线)的DNA。
在产生后代的过程中,需要注意的是,因为我们的个体是路线,所以我们不能够像前两篇文章一样将两个父本的样本进行随机交换,因为如果随机交换,就会出现路线重复的问题,比如说,有两个父本[2,1,0,3]和[3,0,1,2],若将第一个元素进行交换得到一个后代[3,1,0,3]或者[2,0,1,2],这就表示去过3号城市去了两次或2号城市去了两次,明显不合理。这里我们用了一个简单技巧,比如说我们先取[2,1],然后再到另一个父本中去掉[2,1]之后的剩下的城市,同时保持其顺序,即从父本中取出的是[3,0],然后concat就得到了一个后代[2,1,3,0]。详细代码如下:
def create_child(self, parent, population):
if np.random.rand() < self.cross_rate:
index = np.random.randint(0, self.n_population, size=1)
cross_points = np.random.randint(0, 2, self.DNA_size).astype(np.bool)
dad_DNA = parent[cross_points]
mom_DNA = population[index, np.isin(population[index].ravel(), dad_DNA, invert=True)]
parent = np.hstack((dad_DNA, mom_DNA))
#child = parent
return parent
还有,基因突变的时候也会与以前不一样,假设我们现在已经得到了一个后代[2,1,3,0],我们现在要对其进行基因突变,如果我们将1变成了0,那么我们也要将0变1,否则就会出现上面刚刚说到的问题,即城市名重复问题。
def mutate_child(self, child):
for i in range(self.DNA_size):
if np.random.rand() < self.mutate_rate:
child = self.swap(i, child)
return child
def swap(self, i, child):
new_value = np.random.randint(0, self.DNA_size)
j = np.argwhere(child == new_value)[0][0]
child[j] = child[i]
child[i] = new_value
return child
其它的就不多说了,全文代码如下:
import numpy as np
from math import radians, cos, sin, asin, sqrt
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
%matplotlib inline
import sys
reload(sys)
sys.setdefaultencoding('utf8')
class GeneticAlgorithm(object):
"""遗传算法.
Parameters:
-----------
cross_rate: float
交配的可能性大小.
mutate_rate: float
基因突变的可能性大小.
n_population: int
种群的大小.
n_iterations: int
迭代次数.
DNA_size: int
DNA的长度.
n_cities: int
城市个数.
"""
def __init__(self, cross_rate, mutation_rate, n_population, n_iterations, n_cities):
self.cross_rate = cross_rate
self.mutate_rate = mutation_rate
self.n_population = n_population
self.n_iterations = n_iterations
self.DNA_size = n_cities
self.n_cities = n_cities
# 初始化一个种群
def init_population(self):
population = np.array([np.random.permutation(self.DNA_size) for _ in np.arange(self.n_population)]).astype(np.int8)
return population
# 将个体的DNA转换成ASCII
def translateDNA(self, population, longitudes_latitudes):
longitudes = np.empty_like(population, dtype=np.float64)
latitudes = np.empty_like(population, dtype=np.float64)
for i, person in enumerate(population):
longitude_latitude = longitudes_latitudes[person]
longitudes[i, :] = longitude_latitude[:, 0]
latitudes[i, :] = longitude_latitude[:, 1]
return longitudes, latitudes
# 计算种群中每个个体的适应度,适应度越高,说明该个体的基因越好
def fitness(self, population, longitudes, latitudes):
total_distances = np.empty((longitudes.shape[0],), dtype=np.float64)
for i in range(population.shape[0]):
# 方法一: 用欧氏距离计算
# total_distance = np.sum( np.power(np.diff(longitudes[i]), 2) + np.power(np.diff(latitudes[i]), 2) )
# 方法二: 用球面距离计算
total_distance = 0
for j in range(population.shape[1] - 1):
total_distance = total_distance + self.haversine(longitudes[i][j], latitudes[i][j], longitudes[i][j+1], latitudes[i][j+1] )
total_distances[i] = total_distance
fitness_score = np.exp(1/(total_distances + 1e-4))
return fitness_score, total_distances
def haversine(self, lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
参数: 经度1, 纬度1, 经度2, 纬度2 (十进制度数)
"""
# 将十进制度数转化为弧度
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine公式
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
r = 6371 # 地球平均半径,单位为公里
return c * r
# 对种群按照其适应度进行采样,这样适应度高的个体就会以更高的概率被选择
def select(self, population, fitness_score):
idx = np.random.choice(np.arange(self.n_population), size=self.n_population, replace=True, p=fitness_score/fitness_score.sum())
return population[idx]
# 进行交配
def create_child(self, parent, population):
if np.random.rand() < self.cross_rate:
index = np.random.randint(0, self.n_population, size=1)
cross_points = np.random.randint(0, 2, self.DNA_size).astype(np.bool)
dad_DNA = parent[cross_points]
mom_DNA = population[index, np.isin(population[index].ravel(), dad_DNA, invert=True)]
parent = np.hstack((dad_DNA, mom_DNA))
#child = parent
return parent
# 基因突变
def mutate_child(self, child):
for i in range(self.DNA_size):
if np.random.rand() < self.mutate_rate:
child = self.swap(i, child)
return child
def swap(self, i, child):
new_value = np.random.randint(0, self.DNA_size)
j = np.argwhere(child == new_value)[0][0]
child[j] = child[i]
child[i] = new_value
return child
# 进化
def evolution(self, longitudes_latitudes):
population = self.init_population()
longitudes, latitudes = self.translateDNA(population, longitudes_latitudes)
#print(population.shape)
for i in range(self.n_iterations):
fitness_score, total_distances = self.fitness(population, longitudes, latitudes)
#print(fitness_score)
best_person = population[np.argmax(fitness_score)]
best_person = best_person.reshape(-1, best_person.shape[0])
best_person_longitude, best_person_latitude = self.translateDNA(best_person, longitudes_latitudes)
best_person_fitness_score, best_person_distance = self.fitness(best_person, best_person_longitude, best_person_latitude)
if i % 100 == 0:
print(u'第%-4d次进化后, 基因最好的个体(最好的路线)是: %s, 其总距离为: %-4.2f 公里'% (i, str(best_person[0]),
best_person_distance))
if i == self.n_iterations - 1:
print('')
print(u'遗传算法找到的基因最好的个体(最好的路线)是: %s, 其总距离为: %-4.2f 公里'% (str(cities[best_person][0]),
best_person_distance) )
population = self.select(population, fitness_score)
population_copy = population.copy()
#print(population.shape)
for parent in population:
child = self.create_child(parent, population_copy)
#print(child)
child = self.mutate_child(child)
parent[:] = child
population = population
self.best_person = best_person
self.best_person_distance = best_person_distance
self.best_person_longitude = best_person_longitude
self.best_person_latitude = best_person_latitude
def main():
# 加载数据集
#longitudes_latitudes = np.random.rand(n_cities, 2)
data = pd.read_csv('F:/work/Machine-learning-implement/data/china.csv', sep=';', header=None)
global cities
cities = data.ix[:, 0].values
n_cities = cities.shape[0]
longitudes_latitudes = data.ix[:, 1:].values
ga = GeneticAlgorithm(cross_rate=0.8, mutation_rate=0.01, n_population=100, n_iterations=500, n_cities=n_cities)
ga.evolution(longitudes_latitudes)
plt.figure(figsize=(12, 8))
zhfont1 = matplotlib.font_manager.FontProperties(fname='C:\\Windows\\Fonts\\simkai.ttf')
plt.scatter(longitudes_latitudes[:, 0], longitudes_latitudes[:, 1], s=100, c='y')
for i in range(ga.best_person_longitude.shape[1]):
plt.text(ga.best_person_longitude[0][i] + 0.5, ga.best_person_latitude[0][i] + 0.5, "%s" % cities[ga.best_person][0][i],
fontdict='size': 12, 'color': 'k', fontproperties=zhfont1)
plt.plot(ga.best_person_longitude[0], ga.best_person_latitude[0], 'r-')
plt.text(ga.best_person_longitude[0].min()+1, ga.best_person_latitude[0].min()+1,
"Total distance=%.2f" % ga.best_person_distance, fontdict='size': 10, 'color': 'k')
plt.axis('off')
plt.show()
if __name__ == '__main__':
main()
以上是关于从零开始实现遗传算法(用遗传算法求解TSP)的主要内容,如果未能解决你的问题,请参考以下文章