hive on spark 执行sql报错
Posted cclovezbf
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hive on spark 执行sql报错相关的知识,希望对你有一定的参考价值。
sql差不多就是这个样子 疯狂join,然后别人说这个sql跑不动了。报错
INFO] 2022-09-20 11:26:58.500 - [taskAppId=TASK-1850-1276992-1359844]:[127] - -> INFO : 2022-09-20 11:26:52,814 Stage-3_0: 11(+1,-2)/12
INFO : 2022-09-20 11:26:55,823 Stage-3_0: 11(+1,-2)/12
[INFO] 2022-09-20 11:27:03.504 - [taskAppId=TASK-1850-1276992-1359844]:[127] - -> INFO : 2022-09-20 11:26:58,832 Stage-3_0: 11(+1,-2)/12
[INFO] 2022-09-20 11:27:08.507 - [taskAppId=TASK-1850-1276992-1359844]:[127] - -> INFO : 2022-09-20 11:27:01,841 Stage-3_0: 11(+1,-2)/12
INFO : 2022-09-20 11:27:04,850 Stage-3_0: 11(+1,-2)/12
[INFO] 2022-09-20 11:27:13.512 - [taskAppId=TASK-1850-1276992-1359844]:[127] - -> INFO : 2022-09-20 11:27:07,860 Stage-3_0: 11(+1,-2)/12
INFO : 2022-09-20 11:27:10,869 Stage-3_0: 11(+1,-2)/12
[INFO] 2022-09-20 11:27:18.518 - [taskAppId=TASK-1850-1276992-1359844]:[127] - -> INFO : 2022-09-20 11:27:13,878 Stage-3_0: 11(+1,-2)/12
[INFO] 2022-09-20 11:27:23.524 - [taskAppId=TASK-1850-1276992-1359844]:[127] - -> INFO : 2022-09-20 11:27:16,887 Stage-3_0: 11(+1,-2)/12
INFO : 2022-09-20 11:27:19,896 Stage-3_0: 11(+1,-2)/12
[INFO] 2022-09-20 11:27:28.527 - [taskAppId=TASK-1850-1276992-1359844]:[127] - -> INFO : 2022-09-20 11:27:22,905 Stage-3_0: 11(+1,-2)/12
INFO : 2022-09-20 11:27:25,914 Stage-3_0: 11(+1,-2)/12
[INFO] 2022-09-20 11:27:33.534 - [taskAppId=TASK-1850-1276992-1359844]:[127] - -> INFO : 2022-09-20 11:27:28,924 Stage-3_0: 11(+1,-2)/12
[INFO] 2022-09-20 11:27:38.538 - [taskAppId=TASK-1850-1276992-1359844]:[127] - -> INFO : 2022-09-20 11:27:31,933 Stage-3_0: 11(+1,-2)/12
INFO : 2022-09-20 11:27:34,942 Stage-3_0: 11(+1,-2)/12
[INFO] 2022-09-20 11:27:39.058 - [taskAppId=TASK-1850-1276992-1359844]:[127] - -> INFO : 2022-09-20 11:27:37,951 Stage-3_0: 11(+1,-2)/12
ERROR : Spark job[3] failed
java.util.concurrent.ExecutionException: Exception thrown by job
at org.apache.spark.JavaFutureActionWrapper.getImpl(FutureAction.scala:337) ~[spark-core_2.11-2.4.0-cdh6.3.2.jar:2.4.0-cdh6.3.2]
at org.apache.spark.JavaFutureActionWrapper.get(FutureAction.scala:342) ~[spark-core_2.11-2.4.0-cdh6.3.2.jar:2.4.0-cdh6.3.2]
at org.apache.hive.spark.client.RemoteDriver$JobWrapper.call(RemoteDriver.java:404) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
at org.apache.hive.spark.client.RemoteDriver$JobWrapper.call(RemoteDriver.java:365) ~[hive-exec-2.1.1-cdh6.3.2.jar:2.1.1-cdh6.3.2]
at java.util.concurrent.FutureTask.run(FutureTask.java:266) [?:1.8.0_181]
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) [?:1.8.0_181]
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) [?:1.8.0_181]
at java.lang.Thread.run(Thread.java:748) [?:1.8.0_181]
Caused by: org.apache.spark.SparkException: Job 3 cancelled
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1890) ~[spark-core_2.11-2.4.0-cdh6.3.2.jar:2.4.0-cdh6.3.2]
at org.apache.spark.scheduler.DAGScheduler.handleJobCancellation(DAGScheduler.scala:1825) ~[spark-core_2.11-2.4.0-cdh6.3.2.jar:2.4.0-cdh6.3.2]
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2077) ~[spark-core_2.11-2.4.0-cdh6.3.2.jar:2.4.0-cdh6.3.2]
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2060) ~[spark-core_2.11-2.4.0-cdh6.3.2.jar:2.4.0-cdh6.3.2]
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2049) ~[spark-core_2.11-2.4.0-cdh6.3.2.jar:2.4.0-cdh6.3.2]
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49) ~[spark-core_2.11-2.4.0-cdh6.3.2.jar:2.4.0-cdh6.3.2]
ERROR : FAILED: Execution Error, return code 3 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. Spark job failed due to: Job 3 cancelled
INFO : Completed executing command(queryId=hive_20220920112336_c6ae7869-4649-4e2b-92d8-de2de872623b); Time taken: 240.664 seconds
提取有用信息
Stage-3_0: 11(+1,-2)/12 一直这个
很明显stage3有12个task有一个或者2个一直报错,然后最后有一个跑不动了
报错信息ERROR : FAILED: Execution Error, return code 3 from org.apache.hadoop.hive.ql.exec.spark.SparkTask. Spark job failed due to: Job 3 cancelled
这个就看不出啥。
去spark看日志
好像也没啥,点进stage看日志。
继续点stderr
22/09/20 10:44:41 INFO spark.SparkRecordHandler: processing 8000000 rows: used memory = 4763256512 22/09/20 10:44:41 INFO exec.MapOperator: MAP[0]: records read - 8000001 2022-09-20 10:44:41 Processing rows: 1900000 Hashtable size: 1899999 Memory usage: 5115896488 percentage: 0.893 22/09/20 10:44:41 INFO exec.HashTableSinkOperator: 2022-09-20 10:44:41 Processing rows: 1900000 Hashtable size: 1899999 Memory usage: 5115896488 percentage: 0.893 2022-09-20 10:44:44 Processing rows: 2800000 Hashtable size: 2799999 Memory usage: 4183913512 percentage: 0.731 22/09/20 10:44:44 INFO exec.HashTableSinkOperator: 2022-09-20 10:44:44 Processing rows: 2800000 Hashtable size: 2799999 Memory usage: 4183913512 percentage: 0.731 2022-09-20 10:44:44 Processing rows: 2700000 Hashtable size: 2699999 Memory usage: 4286480568 percentage: 0.748 22/09/20 10:44:44 INFO exec.HashTableSinkOperator: 2022-09-20 10:44:44 Processing rows: 2700000 Hashtable size: 2699999 Memory usage: 4286480568 percentage: 0.748 2022-09-20 10:44:45 Processing rows: 2000000 Hashtable size: 1999999 Memory usage: 5207901112 percentage: 0.909 22/09/20 10:44:45 INFO exec.HashTableSinkOperator: 2022-09-20 10:44:45 Processing rows: 2000000 Hashtable size: 1999999 Memory usage: 5207901112 percentage: 0.909 22/09/20 10:44:45 ERROR spark.SparkMapRecordHandler: Error processing row: org.apache.hadoop.hive.ql.metadata.HiveException: Hive Runtime Error while processing row "ap_invoice_distribution_id":"93445098","ap_invoice_id":"6642260","invoice_line_number":"1","ou_key":null,"product_key":null,"region_key":null,"account_key":null,"erp_channel_key":null,"org_key":null,"po_header_id":null,"po_release_id":null,"po_line_id":null,"currency_code":null,"base_currency_code":null,"distribution_type":null,"set_of_book_id":null,"gl_flag":null,"gl_date":null,"unit_price":null,"distribution_amount":null,"base_amount":null,"account_desc":null,"creation_date":null,"creator_id":null,"creator_name":null,"last_update_date":null,"last_updater_id":null,"last_updater_name":null,"etl_create_batch_id":null,"etl_last_update_batch_id":null,"etl_create_job_id":null,"etl_last_update_job_id":null,"etl_create_date":null,"etl_last_update_by":null,"etl_last_update_date":null,"etl_source_system_id":null,"etl_delete_flag":"N","prepay_distribution_id":null org.apache.hadoop.hive.ql.metadata.HiveException: Hive Runtime Error while processing row "ap_invoice_distribution_id":"93445098","ap_invoice_id":"6642260","invoice_line_number":"1","ou_key":null,"product_key":null,"region_key":null,"account_key":null,"erp_channel_key":null,"org_key":null,"po_header_id":null,"po_release_id":null,"po_line_id":null,"currency_code":null,"base_currency_code":null,"distribution_type":null,"set_of_book_id":null,"gl_flag":null,"gl_date":null,"unit_price":null,"distribution_amount":null,"base_amount":null,"account_desc":null,"creation_date":null,"creator_id":null,"creator_name":null,"last_update_date":null,"last_updater_id":null,"last_updater_name":null,"etl_create_batch_id":null,"etl_last_update_batch_id":null,"etl_create_job_id":null,"etl_last_update_job_id":null,"etl_create_date":null,"etl_last_update_by":null,"etl_last_update_date":null,"etl_source_system_id":null,"etl_delete_flag":"N","prepay_distribution_id":null at org.apache.hadoop.hive.ql.exec.MapOperator.process(MapOperator.java:494) at org.apache.hadoop.hive.ql.exec.spark.SparkMapRecordHandler.processRow(SparkMapRecordHandler.java:133) at org.apache.hadoop.hive.ql.exec.spark.HiveMapFunctionResultList.processNextRecord(HiveMapFunctionResultList.java:48) at org.apache.hadoop.hive.ql.exec.spark.HiveMapFunctionResultList.processNextRecord(HiveMapFunctionResultList.java:27) at org.apache.hadoop.hive.ql.exec.spark.HiveBaseFunctionResultList.hasNext(HiveBaseFunctionResultList.java:85) at scala.collection.convert.Wrappers$JIteratorWrapper.hasNext(Wrappers.scala:42) at scala.collection.Iterator$class.foreach(Iterator.scala:891) at scala.collection.AbstractIterator.foreach(Iterator.scala:1334) at org.apache.spark.rdd.AsyncRDDActions$$anonfun$foreachAsync$1$$anonfun$apply$12.apply(AsyncRDDActions.scala:127) at org.apache.spark.rdd.AsyncRDDActions$$anonfun$foreachAsync$1$$anonfun$apply$12.apply(AsyncRDDActions.scala:127) at org.apache.spark.SparkContext$$anonfun$38.apply(SparkContext.scala:2232) at org.apache.spark.SparkContext$$anonfun$38.apply(SparkContext.scala:2232) at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90) at org.apache.spark.scheduler.Task.run(Task.scala:121) at org.apache.spark.executor.Executor$TaskRunner$$anonfun$11.apply(Executor.scala:407) at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1408) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:413) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) at java.lang.Thread.run(Thread.java:748) Caused by: org.apache.hadoop.hive.ql.exec.mapjoin.MapJoinMemoryExhaustionException: 2022-09-20 10:44:45 Processing rows: 2000000 Hashtable size: 1999999 Memory usage: 5207901112 percentage: 0.909 at org.apache.hadoop.hive.ql.exec.mapjoin.MapJoinMemoryExhaustionHandler.checkMemoryStatus(MapJoinMemoryExhaustionHandler.java:99) at org.apache.hadoop.hive.ql.exec.HashTableSinkOperator.process(HashTableSinkOperator.java:259) at org.apache.hadoop.hive.ql.exec.SparkHashTableSinkOperator.process(SparkHashTableSinkOperator.java:85) at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:882) at org.apache.hadoop.hive.ql.exec.FilterOperator.process(FilterOperator.java:126) at org.apache.hadoop.hive.ql.exec.Operator.forward(Operator.java:882) at org.apache.hadoop.hive.ql.exec.TableScanOperator.process(TableScanOperator.java:130) at org.apache.hadoop.hive.ql.exec.MapOperator$MapOpCtx.forward(MapOperator.java:146) at org.apache.hadoop.hive.ql.exec.MapOperator.process(MapOperator.java:484) ... 19 more
这里好像比较清楚了。首先
Memory usage: 5207901112 percentage: 0.909
好像是内存到一个阈值了,然后就报错了。个人感觉是0.9
然后保错的具体原因是 org.apache.hadoop.hive.ql.exec.mapjoin.MapJoinMemoryExhaustionException
注意这个异常 一个mapjoin 一个memory 超过
这个时候有两个选择
1.直接百度 2.去查源码
肯定先选1
https://www.jianshu.com/p/962fa4b4ca13
得到解决答案 set hive.auto.convert.join=false
那么开始假装研究2
下载hive源码 找到 SparkMapRecordHandler类 ,搜索Error processing row
@Override
public void processRow(Object key, Object value) throws IOException
if (!anyRow)
OperatorUtils.setChildrenCollector(mo.getChildOperators(), oc);
anyRow = true;
// reset the execContext for each new row
execContext.resetRow();
try
// Since there is no concept of a group, we don't invoke
// startGroup/endGroup for a mapper
mo.process((Writable) value);
if (LOG.isInfoEnabled())
logMemoryInfo();
catch (Throwable e)
abort = true;
Utilities.setMapWork(jc, null);
if (e instanceof OutOfMemoryError)
// Don't create a new object if we are already out of memory
throw (OutOfMemoryError) e;
else
String msg = "Error processing row: " + e;
LOG.error(msg, e);
throw new RuntimeException(msg, e);
注意这个代码 我们肯定是mo.process处理value的时候报错
那这个mo是啥呢?继续看
if (mrwork.getVectorMode())
mo = new VectorMapOperator(runtimeCtx);
else
mo = new MapOperator(runtimeCtx);
这个是啥,看过我其他文章的我都会提到这个,这个vector叫矢量化,也就是看你开启矢量化
set hive.vectorized.execution.enabled=false; set hive.vectorized.execution.reduce.enabled=false;
我们再看这两个mapOperator的process的区别 说实话源码有点难看。先不看了,根据日志是普通mapOperator()
日志里有
spark.SparkRecordHandler: maximum memory = 5726797824=5.33G
这个是因为我们之前设置的excutor.memory=6G,其中有一些reseverd啥的。
然后跑着跑着就快跑到了 5251681352。
这里就很奇怪 数据库里总数据才6000多w 我这个task直接处理了2400w都ok,
下面的处理了1000w怎么就开始叫唤了?没法继续看日志
注意这个ui图
node13 处理了 task 2 和task6 其中task2是因为node31的task2失败了重试的。
为什么node13 处理task2和6没失败呢?
task 6有24780000, task2有12314310
注意task2是在6都快干了一半的时候才开始的 。
再接着看node13的日志
task6 process
Processing rows: 1700000 Hashtable size: 1699999 Memory usage: 2057941392 percentage: 0.359
task2 process 这里也勉强能够看到 0.49->0.544->0.448 这里变少了 肯定有GC
Processing rows: 5600000 Hashtable size: 5599999 Memory usage: 3490224928 percentage: 0.609
接着 我们看node23的日志
不看了,写的太累了。 还要各种截图。
简单的来说吧,为什么报错
executor node23就6G 两个任务同时运行GC 来不及,所以oom了。
怎么解决?
1.加大executor.memory 最简单的办法,所有任务都可以用这个。
2.注意这里是mapjoin,需要加载数据到内存里,所以别人的文章都是关闭convert.join
我也试了确实ok
3.增加task的数量。如下图 这个文件格式如下 是真的垃圾。大的打 小的小
看这个图很容易看出node13 和node23处理的数据差不多,只是数据分布不均而已。
4.增加内存使用率 默认0.9 改为0.99 感觉就一点卵用
HIVEHASHTABLEMAXMEMORYUSAGE("hive.mapjoin.localtask.max.memory.usage", (float) 0.90, "This number means how much memory the local task can take to hold the key/value into an in-memory hash table. \\n" + "If the local task's memory usage is more than this number, the local task will abort by itself. \\n" + "It means the data of the small table is too large to be held in memory."),
5.看网上的文章也说过 好像是把大表的kv放到内存里了,那么可以尝试使用hint 指定mapjoin
6.gc太垃圾,换个好点的GC,这块研究不多只知道parallel GC cms
以上是关于hive on spark 执行sql报错的主要内容,如果未能解决你的问题,请参考以下文章
hive on spark hql 插入数据报错 Failed to create Spark client for Spark session Error code 30041
hive on spark hql 插入数据报错 Failed to create Spark client for Spark session Error code 30041