NumPy快速入门教程---From Python To NumPy

Posted Techblog of HaoWANG

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了NumPy快速入门教程---From Python To NumPy相关的知识,希望对你有一定的参考价值。

在阅读本教程之前,您应该了解一些Python。如果您想重温记忆,请查看Python教程

如果您希望使用本教程中的示例,则还必须在计算机上安装某些软件。有关说明,请参阅 http://scipy.org/install.html


基础知识

NumPy的主要对象是同构多维数组。它是一个元素表(通常是数字),都是相同的类型,由正整数元组索引。在NumPy维度中称为

例如,3D空间中的点的坐标[1, 2, 1]具有一个轴。该轴有3个元素,所以我们说它的长度为3.在下图所示的例子中,数组有2个轴。第一轴的长度为2,第二轴的长度为3。

[[ 1., 0., 0.],
 [ 0., 1., 2.]]

NumPy的数组类被调用ndarray。它也被别名所知 array。请注意,numpy.array这与标准Python库类不同array.array,后者只处理一维数组并提供较少的功能。ndarray对象更重要的属性是:

ndarray.ndim     数组的维数(尺度)。

ndarray.shape    数组的大小。这是一个整数元组,表示每个维度中数组的大小。对于具有n行和m列的矩阵,shape将是(n,m)shape因此,元组的长度 是轴的数量ndim

ndarray.size      数组的元素总数。这等于元素的乘积shape

ndarray.dtype     描述数组中元素类型的对象。可以使用标准Python类型创建或指定dtype。此外,NumPy还提供自己的类型。numpy.int32numpy.int16numpy.float64就是一些例子。

ndarray.itemsize    数组中每个元素的大小(以字节为单位)。例如,类型的元素数组float64itemsize8(= 64/8),而其中一个类型complex32itemsize4(= 32/8)。它相当于ndarray.dtype.itemsize

ndarray.data       包含数组实际元素的缓冲区。通常,我们不需要使用此属性,因为我们将使用索引工具访问数组中的元素。

例子

>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<type 'numpy.ndarray'>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<type 'numpy.ndarray'>

数组创建

有几种方法可以创建数组。例如,您可以使用该array函数从常规Python列表或元组创建数组。结果数组的类型是从序列中元素的类型推导出来的。

>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype('int64')
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype('float64')

容易犯错误的地方:array使用多个数字参数调用,而不是提供单个数字列表作为参数。

>>> a = np.array(1,2,3,4)    # WRONG
>>> a = np.array([1,2,3,4])  # RIGHT

array 将序列转换成二维阵列,将序列转换成三维阵列,等等。

>>> b = np.array([(1.5,2,3), (4,5,6)])
>>> b
array([[ 1.5,  2. ,  3. ],
       [ 4. ,  5. ,  6. ]])

也可以在创建时显式指定数组的类型:

>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j,  2.+0.j],
       [ 3.+0.j,  4.+0.j]])

通常,数组的元素最初是未知的,但其大小是已知的。因此,NumPy提供了几个函数来创建具有初始占位符内容的数组。这些最小化了增加阵列的必要性,这是一项昂贵的操作

该函数zeros创建一个充满零的数组,该函数 ones创建一个完整的数组,该函数empty 创建一个数组,其初始内容是随机的,取决于内存的状态。默认情况下,创建的数组的dtype是 float64

>>> np.zeros( (3,4) )
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
>>> np.ones( (2,3,4), dtype=np.int16 )                # dtype can also be specified
array([[[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]],
       [[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) )                                 # uninitialized, output may vary
array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260],
       [  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]])

为了创建数字序列,NumPy提供了一个类似于range返回数组而不是列表的函数 。

>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )                 # it accepts float arguments
array([ 0. ,  0.3,  0.6,  0.9,  1.2,  1.5,  1.8])

arange与浮点参数一起使用时,由于有限的浮点精度,通常无法预测获得的元素数量。出于这个原因,通常最好使用linspace作为参数接收我们想要的元素数量的函数,而不是步骤:

>>> from numpy import pi
>>> np.linspace( 0, 2, 9 )                 # 9 numbers from 0 to 2
array([ 0.  ,  0.25,  0.5 ,  0.75,  1.  ,  1.25,  1.5 ,  1.75,  2.  ])
>>> x = np.linspace( 0, 2*pi, 100 )        # useful to evaluate function at lots of points
>>> f = np.sin(x)

打印数组

当打印数组时,NumPy以与嵌套列表类似的方式显示它,但具有以下布局:

  • 最后一个从左到右打印,
  • 倒数第二个从上到下打印,
  • 其余部分也从上到下打印,每个切片用空行分隔。

然后将一维数组打印为,将二维数据打印为矩阵,将三维数据打印为矩阵列表

>>> a = np.arange(6)                         # 1d array
>>> print(a)
[0 1 2 3 4 5]
>>>
>>> b = np.arange(12).reshape(4,3)           # 2d array
>>> print(b)
[[ 0  1  2]
 [ 3  4  5]
 [ 6  7  8]
 [ 9 10 11]]
>>>
>>> c = np.arange(24).reshape(2,3,4)         # 3d array
>>> print(c)
[[[ 0  1  2  3]
  [ 4  5  6  7]
  [ 8  9 10 11]]
 [[12 13 14 15]
  [16 17 18 19]
  [20 21 22 23]]]

如果数组太大而无法打印,NumPy会自动跳过数组的中心部分并仅打印前后数值:

>>> print(np.arange(10000))
[   0    1    2 ..., 9997 9998 9999]
>>>
>>> print(np.arange(10000).reshape(100,100))
[[   0    1    2 ...,   97   98   99]
 [ 100  101  102 ...,  197  198  199]
 [ 200  201  202 ...,  297  298  299]
 ...,
 [9700 9701 9702 ..., 9797 9798 9799]
 [9800 9801 9802 ..., 9897 9898 9899]
 [9900 9901 9902 ..., 9997 9998 9999]]

要禁用此行为并强制NumPy打印整个阵列,可以使用更改打印选项set_printoptions

>>> np.set_printoptions(threshold=np.nan)

基本操作

数组上的算术运算符应用于元素创建一个新数组并填充结果。

>>> a = np.array( [20,30,40,50] )
>>> b = np.arange( 4 )
>>> b
array([0, 1, 2, 3])
>>> c = a-b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624,  7.4511316 , -2.62374854])
>>> a<35
array([ True, True, False, False])

与许多矩阵语言不同,*运算符 在NumPy数组中以元素对应位置相乘。矩阵乘积可以使用@运算符(在python> = 3.5中)或dot函数或方法执行:

>>> A = np.array( [[1,1],
...             [0,1]] )
>>> B = np.array( [[2,0],
...             [3,4]] )
>>> A * B                       # elementwise product
array([[2, 0],
       [0, 4]])
>>> A @ B                       # matrix product
array([[5, 4],
       [3, 4]])
>>> A.dot(B)                    # another matrix product
array([[5, 4],
       [3, 4]])

某些操作(例如+=和)*=可以修改现有阵列而不是创建新阵列。

>>> a = np.ones((2,3), dtype=int)
>>> b = np.random.random((2,3))
>>> a *= 3
>>> a
array([[3, 3, 3],
       [3, 3, 3]])
>>> b += a
>>> b
array([[ 3.417022  ,  3.72032449,  3.00011437],
       [ 3.30233257,  3.14675589,  3.09233859]])
>>> a += b                  # b is not automatically converted to integer type
Traceback (most recent call last):
  ...
TypeError: Cannot cast ufunc add output from dtype('float64') to dtype('int64') with casting rule 'same_kind'

当使用不同类型的数组进行操作时,结果数组的类型对应于更一般或更精确的数组(称为向上转换的行为)。

>>> a = np.ones(3, dtype=np.int32)
>>> b = np.linspace(0,pi,3)
>>> b.dtype.name
'float64'
>>> c = a+b
>>> c
array([ 1.        ,  2.57079633,  4.14159265])
>>> c.dtype.name
'float64'
>>> d = np.exp(c*1j)
>>> d
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
       -0.54030231-0.84147098j])
>>> d.dtype.name
'complex128'

许多一元操作,例如计算数组中所有元素的总和,都是作为ndarray类的方法实现的。

>>> a = np.random.random((2,3))
>>> a
array([[ 0.18626021,  0.34556073,  0.39676747],
       [ 0.53881673,  0.41919451,  0.6852195 ]])
>>> a.sum()
2.5718191614547998
>>> a.min()
0.1862602113776709
>>> a.max()
0.6852195003967595

默认情况下,这些操作适用于数组,就像它是一个数字列表一样,无论其形状如何。但是,通过指定axis 参数,您可以沿数组的指定轴应用操作:

>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> b.sum(axis=0)                            # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1)                            # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1)                         # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])

通用功能

NumPy提供熟悉的数学函数,例如sin,cos和exp。在NumPy中,这些被称为“通用函数”(ufunc)。在NumPy中,这些函数在数组上以元素方式运行,产生一个数组作为输出。

>>>

>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([ 1.        ,  2.71828183,  7.3890561 ])
>>> np.sqrt(B)
array([ 0.        ,  1.        ,  1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2.,  0.,  6.])

索引,切片和迭代

一维数组可以被索引,切片和迭代,就像 列表 和其他Python序列一样。

>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000    # equivalent to a[0:6:2] = -1000; from start to position 6, exclusive, set every 2nd element to -1000
>>> a
array([-1000,     1, -1000,    27, -1000,   125,   216,   343,   512,   729])
>>> a[ : :-1]                                 # reversed a
array([  729,   512,   343,   216,   125, -1000,    27, -1000,     1, -1000])
>>> for i in a:
...     print(i**(1/3.))
...
nan
1.0
nan
3.0
nan
5.0
6.0
7.0
8.0
9.0

多维数组每个轴可以有一个索引。这些索引以逗号​​分隔的元组给出:

>>> def f(x,y):
...     return 10*x+y
...
>>> b = np.fromfunction(f,(5,4),dtype=int)
>>> b
array([[ 0,  1,  2,  3],
       [10, 11, 12, 13],
       [20, 21, 22, 23],
       [30, 31, 32, 33],
       [40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1]                       # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1]                        # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ]                      # each column in the second and third row of b
array([[10, 11, 12, 13],
       [20, 21, 22, 23]])

当提供的索引少于轴的数量时,缺失的索引被认为是完整的切片:

>>> b[-1]                                  # the last row. Equivalent to b[-1,:]
array([40, 41, 42, 43])

括号内的表达式b[i]被视为一个i 后跟尽可能多的实例:来表示剩余的轴。NumPy还允许你用点来写这个 b[i,...]

...根据需要,以产生一个完整的索引元组)表示为许多冒号。例如,if x是一个包含5个轴的数组,那么

  • x[1,2,...]相当于x[1,2,:,:,:]
  • x[...,3]x[:,:,:,:,3]
  • x[4,...,5,:]x[4,:,:,5,:]
>>> c = np.array( [[[  0,  1,  2],               # a 3D array (two stacked 2D arrays)
...                 [ 10, 12, 13]],
...                [[100,101,102],
...                 [110,112,113]]])
>>> c.shape
(2, 2, 3)
>>> c[1,...]                                   # same as c[1,:,:] or c[1]
array([[100, 101, 102],
       [110, 112, 113]])
>>> c[...,2]                                   # same as c[:,:,2]
array([[  2,  13],
       [102, 113]])

对多维数组进行迭代是针对第一个轴完成的:

>>> for row in b:
...     print(row)
...
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]

但是,如果想要对数组中的每个元素执行操作,可以使用flat属性 作为数组的所有元素的 迭代器

>>> for element in b.flat:
...     print(element)
...
0
1
2
3
10
11
12
13
20
21
22
23
30
31
32
33
40
41
42
43

形状操纵

改变数组的形状

数组的形状由沿每个轴的元素数量给出:

>>>

>>> a = np.floor(10*np.random.random((3,4)))
>>> a
array([[ 2.,  8.,  0.,  6.],
       [ 4.,  5.,  1.,  1.],
       [ 8.,  9.,  3.,  6.]])
>>> a.shape
(3, 4)

可以使用各种命令更改阵列的形状。请注意,以下三个命令都返回已修改的数组,但不更改原始数组:

>>>

>>> a.ravel()  # returns the array, flattened
array([ 2.,  8.,  0.,  6.,  4.,  5.,  1.,  1.,  8.,  9.,  3.,  6.])
>>> a.reshape(6,2)  # returns the array with a modified shape
array([[ 2.,  8.],
       [ 0.,  6.],
       [ 4.,  5.],
       [ 1.,  1.],
       [ 8.,  9.],
       [ 3.,  6.]])
>>> a.T  # returns the array, transposed
array([[ 2.,  4.,  8.],
       [ 8.,  5.,  9.],
       [ 0.,  1.,  3.],
       [ 6.,  1.,  6.]])
>>> a.T.shape
(4, 3)
>>> a.shape
(3, 4)

由ravel()产生的数组中元素的顺序通常是“C风格”,也就是说,最右边的索引“变化最快”,因此[0,0]之后的元素是[0,1] 。如果将数组重新整形为其他形状,则该数组将被视为“C风格”。NumPy通常创建按此顺序存储的数组,因此ravel()通常不需要复制其参数,但如果数组是通过获取另一个数组的切片或使用不常见的选项创建的,则可能需要复制它。还可以使用可选参数指示函数ravel()和reshape(),以使用FORTRAN样式的数组,其中最左边的索引变化最快。

reshape函数返回带有修改形状的参数,而该 ndarray.resize方法修改数组本身:

>>> a
array([[ 2.,  8.,  0.,  6.],
       [ 4.,  5.,  1.,  1.],
       [ 8.,  9.,  3.,  6.]])
>>> a.resize((2,6))
>>> a
array([[ 2.,  8.,  0.,  6.,  4.,  5.],
       [ 1.,  1.,  8.,  9.,  3.,  6.]])

如果在重新整形操作中将尺寸指定为-1,则会自动计算其他尺寸:

>>> a.reshape(3,-1)
array([[ 2.,  8.,  0.,  6.],
       [ 4.,  5.,  1.,  1.],
       [ 8.,  9.,  3.,  6.]])

 

堆叠不同的数组

几个阵列可以沿不同的轴堆叠在一起:

>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[ 8.,  8.],
       [ 0.,  0.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[ 1.,  8.],
       [ 0.,  4.]])
>>> np.vstack((a,b))
array([[ 8.,  8.],
       [ 0.,  0.],
       [ 1.,  8.],
       [ 0.,  4.]])
>>> np.hstack((a,b))
array([[ 8.,  8.,  1.,  8.],
       [ 0.,  0.,  0.,  4.]])

该函数将column_stack 1D数组作为列堆叠到2D数组中。它仅相当于 hstack2D数组:

>>> from numpy import newaxis
>>> np.column_stack((a,b))     # with 2D arrays
array([[ 8.,  8.,  1.,  8.],
       [ 0.,  0.,  0.,  4.]])
>>> a = np.array([4.,2.])
>>> b = np.array([3.,8.])
>>> np.column_stack((a,b))     # returns a 2D array
array([[ 4., 3.],
       [ 2., 8.]])
>>> np.hstack((a,b))           # the result is different
array([ 4., 2., 3., 8.])
>>> a[:,newaxis]               # this allows to have a 2D columns vector
array([[ 4.],
       [ 2.]])
>>> np.column_stack((a[:,newaxis],b[:,newaxis]))
array([[ 4.,  3.],
       [ 2.,  8.]])
>>> np.hstack((a[:,newaxis],b[:,newaxis]))   # the result is the same
array([[ 4.,  3.],
       [ 2.,  8.]])

另一方面,该函数row_stack等效vstack 于任何输入数组。通常,对于具有两个以上维度的数组, hstack沿其第二轴vstack堆叠,沿其第一轴堆叠,并concatenate 允许可选参数给出连接应发生的轴的数量。

注意

在复杂的情况下,r_并且 c_是用于通过沿一个轴堆叠号码创建阵列有用的。它们允许使用范围文字(“:”)

>>> np.r_[1:4,0,4]
array([1, 2, 3, 0, 4])

当与数组作为参数使用的, r_并且 c_是类似于 vstack和 hstack在它们的默认行为,但允许一个可选参数给轴沿其来连接的数量。

也可以看看

hstack, vstack, column_stack, concatenate, c_, r_

将一个数组拆分成几个较小的数组

使用时hsplit,可以沿着水平轴分割数组,方法是指定要返回的形状相同的数组的数量,或者通过指定应该进行除法的列:

>>> a = np.floor(10*np.random.random((2,12)))
>>> a
array([[ 9.,  5.,  6.,  3.,  6.,  8.,  0.,  7.,  9.,  7.,  2.,  7.],
       [ 1.,  4.,  9.,  2.,  2.,  1.,  0.,  6.,  2.,  2.,  4.,  0.]])
>>> np.hsplit(a,3)   # Split a into 3
[array([[ 9.,  5.,  6.,  3.],
       [ 1.,  4.,  9.,  2.]]), array([[ 6.,  8.,  0.,  7.],
       [ 2.,  1.,  0.,  6.]]), array([[ 9.,  7.,  2.,  7.],
       [ 2.,  2.,  4.,  0.]])]
>>> np.hsplit(a,(3,4))   # Split a after the third and the fourth column
[array([[ 9.,  5.,  6.],
       [ 1.,  4.,  9.]]), array([[ 3.],
       [ 2.]]), array([[ 6.,  8.,  0.,  7.,  9.,  7.,  2.,  7.],
       [ 2.,  1.,  0.,  6.,  2.,  2.,  4.,  0.]])]

vsplit沿垂直轴分割,并array_split允许指定要分割的轴。


副本和视图

在操作和操作数组时,有时会将数据复制到新数组中,有时则不会。这往往是初学者混淆的根源。有三种情况:

完全没有复制

简单分配不会复制数组对象或其数据。

>>>

>>> a = np.arange(12)
>>> b = a            # no new object is created
>>> b is a           # a and b are two names for the same ndarray object
True
>>> b.shape = 3,4    # changes the shape of a
>>> a.shape
(3, 4)

Python将可变对象作为引用传递,因此函数调用不会复制。

>>>

>>> def f(x):
...     print(id(x))
...
>>> id(a)                           # id is a unique identifier of an object
148293216
>>> f(a)
148293216

查看或浅拷贝

不同的数组对象可以共享相同的数据。该view方法创建一个查看相同数据的新数组对象。

>>>

>>> c = a.view()
>>> c is a
False
>>> c.base is a                        # c is a view of the data owned by a
True
>>> c.flags.owndata
False
>>>
>>> c.shape = 2,6                      # a's shape doesn't change
>>> a.shape
(3, 4)
>>> c[0,4] = 1234                      # a's data changes
>>> a
array([[   0,    1,    2,    3],
       [1234,    5,    6,    7],
       [   8,    9,   10,   11]])

切片数组会返回一个视图:

>>>

>>> s = a[ : , 1:3]     # spaces added for clarity; could also be written "s = a[:,1:3]"
>>> s[:] = 10           # s[:] is a view of s. Note the difference between s=10 and s[:]=10
>>> a
array([[   0,   10,   10,    3],
       [1234,   10,   10,    7],
       [   8,   10,   10,   11]])

深拷贝

copy方法生成数组及其数据的完整副本。

>>>

>>> d = a.copy()                          # a new array object with new data is created
>>> d is a
False
>>> d.base is a                           # d doesn't share anything with a
False
>>> d[0,0] = 9999
>>> a
array([[   0,   10,   10,    3],
       [1234,   10,   10,    7],
       [   8,   10,   10,   11]])

功能和方法概述

以下是按类别排序的一些有用的NumPy函数和方法名称的列表。有关完整列表,请参阅例程

数组创建

arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity, linspace, logspacemgrid, ogrid, ones, ones_like, - [R ,zeros, zeros_like

转换

ndarray.astype, atleast_1d, atleast_2d, atleast_3d, mat

手法

array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack, ndarray.itemnewaxis, ravel, repeat, reshape, resize, squeeze, swapaxes, take, transpose, vsplit, vstack

问题

all, any, nonzero, where

订购

argmax, argmin, argsort, max, min, ptp, searchsorted, sort

操作

choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real, sum

基本统计

cov, mean, std, var

基本线性代数

cross, dot, outer, linalg.svd, vdot


使用索引数组进行索引

>>>

>>> a = np.arange(12)**2                       # the first 12 square numbers
>>> i = np.array( [ 1,1,3,8,5 ] )              # an array of indices
>>> a[i]                                       # the elements of a at the positions i
array([ 1,  1,  9, 64, 25])
>>>
>>> j = np.array( [ [ 3, 4], [ 9, 7 ] ] )      # a bidimensional array of indices
>>> a[j]                                       # the same shape as j
array([[ 9, 16],
       [81, 49]])

当索引数组a是多维的时,单个索引数组指的是第一个维度a。以下示例通过使用调色板将标签图像转换为彩色图像来显示此行为。

>>>

>>> palette = np.array( [ [0,0,0],                # black
...                       [255,0,0],              # red
...                       [0,255,0],              # green
...                       [0,0,255],              # blue
...                       [255,255,255] ] )       # white
>>> image = np.array( [ [ 0, 1, 2, 0 ],           # each value corresponds to a color in the palette
...                     [ 0, 3, 4, 0 ]  ] )
>>> palette[image]                            # the (2,4,3) color image
array([[[  0,   0,   0],
        [255,   0,   0],
        [  0, 255,   0],
        [  0,   0,   0]],
       [[  0,   0,   0],
        [  0,   0, 255],
        [255, 255, 255],
        [  0,   0,   0]]])

我们还可以为多个维度提供索引。每个维度的索引数组必须具有相同的形状。

>>>

>>> a = np.arange(12).reshape(3,4)
>>> a
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>> i = np.array( [ [0,1],                        # indices for the first dim of a
...                 [1,2] ] )
>>> j = np.array( [ [2,1],                        # indices for the second dim
...                 [3,3] ] )
>>>
>>> a[i,j]                                     # i and j must have equal shape
array([[ 2,  5],
       [ 7, 11]])
>>>
>>> a[i,2]
array([[ 2,  6],
       [ 6, 10]])
>>>
>>> a[:,j]                                     # i.e., a[ : , j]
array([[[ 2,  1],
        [ 3,  3]],
       [[ 6,  5],
        [ 7,  7]],
       [[10,  9],
        [11, 11]]])

当然,我们可以按顺序(比如列表)放入ij然后使用列表进行索引。

>>>

>>> l = [i,j]
>>> a[l]                                       # equivalent to a[i,j]
array([[ 2,  5],
       [ 7, 11]])

但是,我们不能通过放入ij放入数组来实现这一点,因为这个数组将被解释为索引a的第一个维度。

>>>

>>> s = np.array( [i,j] )
>>> a[s]                                       # not what we want
Traceback (most recent call last):
  File "<stdin>", line 1, in ?
IndexError: index (3) out of range (0<=index<=2) in dimension 0
>>>
>>> a[tuple(s)]                                # same as a[i,j]
array([[ 2,  5],
       [ 7, 11]])

使用数组索引的另一个常见用途是搜索与时间相关的系列的最大值:

>>>

>>> time = np.linspace(20, 145, 5)                 # time scale
>>> data = np.sin(np.arange(20)).reshape(5,4)      # 4 time-dependent series
>>> time
array([  20.  ,   51.25,   82.5 ,  113.75,  145.  ])
>>> data
array([[ 0.        ,  0.84147098,  0.90929743,  0.14112001],
       [-0.7568025 , -0.95892427, -0.2794155 ,  0.6569866 ],
       [ 0.98935825,  0.41211849, -0.54402111, -0.99999021],
       [-0.53657292,  0.42016704,  0.99060736,  0.65028784],
       [-0.28790332, -0.96139749, -0.75098725,  0.14987721]])
>>>
>>> ind = data.argmax(axis=0)                  # index of the maxima for each series
>>> ind
array([2, 0, 3, 1])
>>>
>>> time_max = time[ind]                       # times corresponding to the maxima
>>>
>>> data_max = data[ind, range(data.shape[1])] # => data[ind[0],0], data[ind[1],1]...
>>>
>>> time_max
array([  82.5 ,   20.  ,  113.75,   51.25])
>>> data_max
array([ 0.98935825,  0.84147098,  0.99060736,  0.6569866 ])
>>>
>>> np.all(data_max == data.max(axis=0))
True

您还可以使用数组索引作为分配给的目标:

>>>

>>> a = np.arange(5)
>>> a
array([0, 1, 2, 3, 4])
>>> a[[1,3,4]] = 0
>>> a
array([0, 0, 2, 0, 0])

但是,当索引列表包含重复时,分配会多次完成,留下最后一个值:

>>>

>>> a = np.arange(5)
>>> a[[0,0,2]]=[1,2,3]
>>> a
array([2, 1, 3, 3, 4])

这是合理的,但请注意是否要使用Python的 +=构造,因为它可能不会按预期执行:

>>>

>>> a = np.arange(5)
>>> a[[0,0,2]]+=1
>>> a
array([1, 1, 3, 3, 4])

即使0在索引列表中出现两次,第0个元素也只增加一次。这是因为Python要求“a + = 1”等同于“a = a + 1”。


使用布尔数组进行索引

当我们使用(整数)索引数组索引数组时,我们提供了要选择的索引列表。使用布尔索引,方法是不同的; 我们明确地选择我们想要的数组中的哪些项目以及我们不需要的项目。

人们可以想到的最自然的布尔索引方法是使用与原始数组具有相同形状的布尔数组:

>>>

>>> a = np.arange(12).reshape(3,4)
>>> b = a > 4
>>> b                                          # b is a boolean with a's shape
array([[False, False, False, False],
       [False,  True,  True,  True],
       [ True,  True,  True,  True]])
>>> a[b]                                       # 1d array with the selected elements
array([ 5,  6,  7,  8,  9, 10, 11])

此属性在分配中非常有用:

>>>

>>> a[b] = 0                                   # All elements of 'a' higher than 4 become 0
>>> a
array([[0, 1, 2, 3],
       [4, 0, 0, 0],
       [0, 0, 0, 0]])

您可以查看以下示例,了解如何使用布尔索引生成Mandelbrot集的图像:

>>>

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> def mandelbrot( h,w, maxit=20 ):
...     """Returns an image of the Mandelbrot fractal of size (h,w)."""
...     y,x = np.ogrid[ -1.4:1.4:h*1j, -2:0.8:w*1j ]
...     c = x+y*1j
...     z = c
...     divtime = maxit + np.zeros(z.shape, dtype=int)
...
...     for i in range(maxit):
...         z = z**2 + c
...         diverge = z*np.conj(z) > 2**2            # who is diverging
...         div_now = diverge & (divtime==maxit)  # who is diverging now
...         divtime[div_now] = i                  # note when
...         z[diverge] = 2                        # avoid diverging too much
...
...     return divtime
>>> plt.imshow(mandelbrot(400,400))
>>> plt.show()

使用布尔值进行索引的第二种方法更类似于整数索引; 对于数组的每个维度,我们给出一个1D布尔数组,选择我们想要的切片:

>>>

>>> a = np.arange(12).reshape(3,4)
>>> b1 = np.array([False,True,True])             # first dim selection
>>> b2 = np.array([True,False,True,False])       # second dim selection
>>>
>>> a[b1,:]                                   # selecting rows
array([[ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> a[b1]                                     # same thing
array([[ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> a[:,b2]                                   # selecting columns
array([[ 0,  2],
       [ 4,  6],
       [ 8, 10]])
>>>
>>> a[b1,b2]                                  # a weird thing to do
array([ 4, 10])

请注意,1D布尔数组的长度必须与要切片的尺寸(或轴)的长度一致。在前面的例子中,b1具有长度为3(的数目的行a),和 b2(长度4)适合于索引的第二轴线(列) a

ix_()函数

ix_函数可用于组合不同的向量,以便获得每个n-uplet的结果。例如,如果要计算从每个向量a,b和c中取得的所有三元组的所有a + b * c:

>>>

>>> a = np.array([2,3,4,5])
>>> b = np.array([8,5,4])
>>> c = np.array([5,4,6,8,3])
>>> ax,bx,cx = np.ix_(a,b,c)
>>> ax
array([[[2]],
       [[3]],
       [[4]],
       [[5]]])
>>> bx
array([[[8],
        [5],
        [4]]])
>>> cx
array([[[5, 4, 6, 8, 3]]])
>>> ax.shape, bx.shape, cx.shape
((4, 1, 1), (1, 3, 1), (1, 1, 5))
>>> result = ax+bx*cx
>>> result
array([[[42, 34, 50, 66, 26],
        [27, 22, 32, 42, 17],
        [22, 18, 26, 34, 14]],
       [[43, 35, 51, 67, 27],
        [28, 23, 33, 43, 18],
        [23, 19, 27, 35, 15]],
       [[44, 36, 52, 68, 28],
        [29, 24, 34, 44, 19],
        [24, 20, 28, 36, 16]],
       [[45, 37, 53, 69, 29],
        [30, 25, 35, 45, 20],
        [25, 21, 29, 37, 17]]])
>>> result[3,2,4]
17
>>> a[3]+b[2]*c[4]
17

您还可以按如下方式实现reduce:

>>>

>>> def ufunc_reduce(ufct, *vectors):
...    vs = np.ix_(*vectors)
...    r = ufct.identity
...    for v in vs:
...        r = ufct(r,v)
...    return r

然后将其用作:

>>>

>>> ufunc_reduce(np.add,a,b,c)
array([[[15, 14, 16, 18, 13],
        [12, 11, 13, 15, 10],
        [11, 10, 12, 14,  9]],
       [[16, 15, 17, 19, 14],
        [13, 12, 14, 16, 11],
        [12, 11, 13, 15, 10]],
       [[17, 16, 18, 20, 15],
        [14, 13, 15, 17, 12],
        [13, 12, 14, 16, 11]],
       [[18, 17, 19, 21, 16],
        [15, 14, 16, 18, 13],
        [14, 13, 15, 17, 12]]])

与普通的ufunc.reduce相比,这个版本的reduce的优点是它利用了广播规则 ,以避免创建一个参数数组&#

以上是关于NumPy快速入门教程---From Python To NumPy的主要内容,如果未能解决你的问题,请参考以下文章

NumPy 快速入门

NumPy 快速入门

NumPy 快速入门

NumPy快速入门笔记

给深度学习入门者的Python快速教程 - Numpy和Matplotlib篇

给深度学习入门者的Python快速教程 - Numpy和Matplotlib篇