c++的ThreadPool,OpenHarmony源码实现版赏析和使用
Posted 特立独行的猫a
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了c++的ThreadPool,OpenHarmony源码实现版赏析和使用相关的知识,希望对你有一定的参考价值。
前言
c++11虽然加入了线程库thread,然而 c++ 对于多线程的支持还是比较低级,稍微高级一点的用法都需要自己去实现。比如备受期待的网络库至今标准库里还没有支持,常用acl或asio替代。鸿蒙OpenHarmony源码中的网络栈模块部分,也是十分漂亮的实现,值得学习研究。
c++的ThreadPool实现,网上有很多个版本,文章的末尾就有两种不同的实现。然而经过对比发现,还是OpenHarmony源码的实现最优雅。代码简练,且直观易懂。写的真漂亮!只是使用起来稍麻烦些,比如不支持lambda的写法。后续可基于此改造,使其支持lambda函数的调用。
关于线程池
简单来说就是有一堆已经创建好的线程(最大数目一定),初始时他们都处于空闲状态。当有新的任务进来,从线程池中取出一个空闲的线程处理任务然后当任务处理完成之后,该线程被重新放回到线程池中,供其他的任务使用。当线程池中的线程都在处理任务时,就没有空闲线程供使用,此时,若有新的任务产生,只能等待线程池中有线程结束任务空闲才能执行。
线程池优点
线程本来就是可重用的资源,不需要每次使用时都进行初始化。因此可以采用有限的线程个数处理无限的任务。既可以提高速度和效率,又降低线程频繁创建的开销。比如要异步干的活,就没必要等待。丢到线程池里处理,结果在回调中处理。频繁执行的异步任务,若每次都创建线程势必造成不小的开销。
源码位置
该网络模块的github地址:communication_netstack: 网络协议栈
harmonyos\\communication_netstack-master\\utils\\common_utils\\include\\thread_pool.h
网络协议栈模块作为电话子系统可裁剪部件,主要分为HTTP和socket模块。
网络协议栈模块的源码结构:
/foundation/communication/netstack
├─figures # 架构图
├─frameworks # API实现
│ └─js # JS API实现
│ ├─builtin # 小型系统JS API实现
│ └─napi # 标准系统JS API实现
│ ├─http # http API
│ ├─socket # socket API
│ └─websocket # websocket API
├─interfaces # JS 接口定义
├─test # 测试
└─utils # 工具
图 socket接口架构图
ThreadPool源码
/*
* Copyright (c) 2022 Huawei Device Co., Ltd.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef NETSTACK_THREAD_POOL
#define NETSTACK_THREAD_POOL
#include <atomic>
#include <condition_variable>
#include <queue>
#include <thread>
#include <vector>
namespace OHOS::NetStack
template <typename Task, const size_t DEFAULT_THREAD_NUM, const size_t MAX_THREAD_NUM> class ThreadPool
public:
/**
* disallow default constructor
*/
ThreadPool() = delete;
/**
* disallow copy and move
*/
ThreadPool(const ThreadPool &) = delete;
/**
* disallow copy and move
*/
ThreadPool &operator=(const ThreadPool &) = delete;
/**
* disallow copy and move
*/
ThreadPool(ThreadPool &&) = delete;
/**
* disallow copy and move
*/
ThreadPool &operator=(ThreadPool &&) = delete;
/**
* make DEFAULT_THREAD_NUM threads
* @param timeout if timeout and runningThreadNum_ < DEFAULT_THREAD_NUM, the running thread should be terminated
*/
explicit ThreadPool(uint32_t timeout) : timeout_(timeout), idleThreadNum_(0), needRun_(true)
for (int i = 0; i < DEFAULT_THREAD_NUM; ++i)
std::thread([this] RunTask(); ).detach();
/**
* if ~ThreadPool, terminate all thread
*/
~ThreadPool()
// set needRun_ = false, and notify all the thread to wake and terminate
needRun_ = false;
while (runningNum_ > 0)
needRunCondition_.notify_all();
/**
* push it to taskQueue_ and notify a thread to run it
* @param task new task to Execute
*/
void Push(const Task &task)
PushTask(task);
if (runningNum_ < MAX_THREAD_NUM && idleThreadNum_ == 0)
std::thread([this] RunTask(); ).detach();
needRunCondition_.notify_all();
private:
bool IsQueueEmpty()
std::lock_guard<std::mutex> guard(mutex_);
return taskQueue_.empty();
bool GetTask(Task &task)
std::lock_guard<std::mutex> guard(mutex_);
// if taskQueue_ is empty, means timeout
if (taskQueue_.empty())
return false;
// if run to this line, means that taskQueue_ is not empty
task = taskQueue_.top();
taskQueue_.pop();
return true;
void PushTask(const Task &task)
std::lock_guard<std::mutex> guard(mutex_);
taskQueue_.push(task);
class NumWrapper
public:
NumWrapper() = delete;
explicit NumWrapper(std::atomic<uint32_t> &num) : num_(num)
++num_;
~NumWrapper()
--num_;
private:
std::atomic<uint32_t> &num_;
;
void Sleep()
std::mutex needRunMutex;
std::unique_lock<std::mutex> lock(needRunMutex);
/**
* if the thread is waiting, it is idle
* if wake up, this thread is not idle:
* 1 this thread should return
* 2 this thread should run task
* 3 this thread should go to next loop
*/
NumWrapper idleWrapper(idleThreadNum_);
(void)idleWrapper;
needRunCondition_.wait_for(lock, std::chrono::seconds(timeout_),
[this] return !needRun_ || !IsQueueEmpty(); );
void RunTask()
NumWrapper runningWrapper(runningNum_);
(void)runningWrapper;
while (needRun_)
Task task;
if (GetTask(task))
task.Execute();
continue;
Sleep();
if (!needRun_)
return;
if (GetTask(task))
task.Execute();
continue;
if (runningNum_ > DEFAULT_THREAD_NUM)
return;
private:
/**
* other thread put a task to the taskQueue_
*/
std::mutex mutex_;
std::priority_queue<Task> taskQueue_;
/**
* 1 terminate the thread if it is idle for timeout_ seconds
* 2 wait for the thread started util timeout_
* 3 wait for the thread notified util timeout_
* 4 wait for the thread terminated util timeout_
*/
uint32_t timeout_;
/**
* if idleThreadNum_ is zero, make a new thread
*/
std::atomic<uint32_t> idleThreadNum_;
/**
* when ThreadPool object is deleted, wait until runningNum_ is zero.
*/
std::atomic<uint32_t> runningNum_;
/**
* when ThreadPool object is deleted, set needRun_ to false, mean that all thread should be terminated
*/
std::atomic_bool needRun_;
std::condition_variable needRunCondition_;
;
// namespace OHOS::NetStack
#endif /* NETSTACK_THREAD_POOL */
源码赏析
从这份源码里,可以看到queue是如何安全的被使用的。之前博主有篇文章,记录了多线程下使用queue造成的崩溃问题。链接在这里:c++的queue在多线程下崩溃原因分析_特立独行的猫a的博客-CSDN博客_c++ queue 多线程
通过华为鸿蒙源码的学习研究,可以发现queue的安全使用方式top和pop以及empty的判断都是使用了 std::lock_guard互斥量原子操作的保护。也证实了博主上篇文章分析中提到的,类似队列这种操作,要确保在一个原子操作内完成,不可被打断。试想一个线程刚好pop,另外一个线程却刚要执行top会怎样?那样逻辑就错了。
这份源码的实现,没有使用一些较难理解的语法,基本上就是使用线程+优先级队列实现的。提前创建指定数目的线程,每次取一个任务并执行。任务队列负责存放线程需要处理的任务,工作线程负责从任务队列中取出和运行任务,可以看成是一个生产者和多个消费者的模型。
ThreadPool使用
以下是该版本thread_pool的简单使用示例,可以看到使用稍微麻烦了些。必须定义格式如下的task类,必须实现operator<和Execute()方法。
需要注意的是,若有多个同一个实现的task实例放入thread_pool,Execute()方法内的逻辑可是在多线程环境下的,需注意多线程下变量访问的保护。如同以下示例,同一个task类的多个实例放入了thread_pool,不加std::lock_guard打印出的显示是乱的。
#include "doctest.h"
DOCTEST_MAKE_STD_HEADERS_CLEAN_FROM_WARNINGS_ON_WALL_BEGIN
#include <stdexcept>
DOCTEST_MAKE_STD_HEADERS_CLEAN_FROM_WARNINGS_ON_WALL_END
//#define DOCTEST_CONFIG_IMPLEMENT_WITH_MAIN
//#define DOCTEST_CONFIG_DISABLE
#include <string>
#include <iostream>
#include "thread_pool.h"
//
// Created by Administrator on 2022/8/10.
//
class Task
public:
Task() = default;
explicit Task(std::string context)
mContext = context;
bool operator<(const Task &e) const
return priority_ < e.priority_;
void Execute()
std::lock_guard<std::mutex> guard(mutex_);
std::cout << "task is execute,name is:"<<mContext<<std::endl;
public:
uint32_t priority_;
private:
std::string mContext;
static std::mutex mutex_;
;
#define DEFAULT_THREAD_NUM 3
#define MAX_THREAD_NUM 6
#define TIME_OUT 500
std::mutex Task::mutex_;
static int myTest()
static OHOS_NetStack::ThreadPool<Task, DEFAULT_THREAD_NUM, MAX_THREAD_NUM> threadPool_(TIME_OUT);
Task task1("name_1");
Task task2("name_2");
Task task3("name_3");
Task task4("name_4");
threadPool_.Push(task1);
threadPool_.Push(task2);
threadPool_.Push(task3);
threadPool_.Push(task4);
//system("pause");
return 0;
TEST_CASE("threadPool simple use example, test by doctest unit tool")
myTest();
结果输出:
引用
c++11线程池的实现原理及回调函数的使用_特立独行的猫a的博客-CSDN博客_c++多线程回调
以上是关于c++的ThreadPool,OpenHarmony源码实现版赏析和使用的主要内容,如果未能解决你的问题,请参考以下文章
C++轻量级Web服务器TinyWebServer源码分析之threadpool篇
repo 报错..... repo_from: NONE..... jlinkTagCodeIP:.....opt.manifest_url: https://gitee.com/openharmon