MySQL 索引

Posted 小倪同学 -_-

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MySQL 索引相关的知识,希望对你有一定的参考价值。

文章目录

索引简介

索引:提高数据库的性能,索引是物美价廉的东西了。不用加载内存,不用改程序,不用调sql,只要执行正确的create index ,查询速度就可能提高成百上千倍。但是查询速度的提高是以插入、更新、删除的速度为代价的,这些写操作,增加了大量的IO。所以它的价值,在于提高一个海量数据的检索速度。

常见索引分为:

  • 主键索引(primary key)
  • 唯一索引(unique)
  • 普通索引(index)
  • 全文索引(fulltext)–解决中子文索引问题

例:

先整一个海量表,在查询的时候,看看没有索引时有什么问题?

构建一个8000000条记录的数据
构建的海量表数据需要有差异性,所以使用存储过程来创建

-- 产生随机字符串
delimiter $$
create function rand_string(n INT)
returns varchar(255)
begin
	declare chars_str varchar(100) default
		'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
declare return_str varchar(255) default '';
declare i int default 0;
while i < n do
		set return_str =concat(return_str,substring(chars_str,floor(1+rand()*52),1));
		set i = i + 1;
		end while;
	return return_str;
	end $$
delimiter ;

--产生随机数字
delimiter $$
create function rand_num()
returns int(5)
begin
	declare i int default 0;
	set i = floor(10+rand()*500);
return i;
end $$
delimiter ;

--创建存储过程,向雇员表添加海量数据
delimiter $$
create procedure insert_emp(in start int(10),in max_num int(10))
begin
declare i int default 0;
	set autocommit = 0;
	repeat
		set i = i + 1;
		insert into EMP values ((start+i)
,rand_string(6),'SALESMAN',0001,curdate(),2000,400,rand_num());
		until i = max_num
	end repeat;
	commit;
end $$
delimiter ;

-- 执行存储过程,添加8000000条记录
call insert_emp(100001, 8000000);

可以看到耗时5.32秒,这还是在本机一个人来操作,在实际项目中,如果放在公网中,假如同时有1000个人并发查询,那很可能会死机。

那有没有什么办法可以查询的更快一些呢?

我们可以建立索引

认识磁盘

mysql与存储

MySQL 给用户提供存储服务,而存储的都是数据,数据在磁盘这个外设当中。磁盘是计算机中的一个机械设备,相比于计算机其他电子元件,磁盘效率是比较低的,在加上IO本身的特征,可以知道,如何提交效率,是 MySQL 的一个重要话题。

磁盘

磁盘中一个盘片

扇区

数据库文件,本质其实就是保存在磁盘的盘片当中。也就是上面的一个个小格子中,就是我们经常所说的扇区。当然,数据库文件很大,也很多,一定需要占据多个扇区。

从上图可以看出来,在半径方向上,距离圆心越近,扇区越小,距离圆心越远,扇区越大。那么,所有扇区都是默认512字节吗?目前是的,我们也这样认为。因为保证一个扇区多大,是由比特位密度决定的。不过最新的磁盘技术,已经慢慢的让扇区大小不同了。

我们在使用Linux,所看到的大部分目录或者文件,其实就是保存在硬盘当中的(当然,有一些内存文件系统,如:proc , sys 之类,我们不考虑)。

数据库文件,本质其实就是保存在磁盘的盘片当中,就是一个一个的文件。

所以,找到一个文件的全部,本质就是在磁盘找到所有保存文件的扇区。
而我们能够定位任何一个扇区,那么便能找到所有扇区,因为查找方式是一样的。

定位扇区

  • 柱面(磁道): 多盘磁盘,每盘都是双面,大小完全相等。那么同半径的磁道,整体上便构成了一个柱面
  • 每个盘面都有一个磁头,那么磁头和盘面的对应关系便是1对1的
  • 磁头(Heads)、柱面(Cylinder)(等价于磁道)、扇区(Sector)对应的编号。即可在磁盘上定位所要访问的扇区。这种磁盘数据定位方式叫做 CHS 。不过实际系统软件使用的并不是 CHS (但是硬件是),而是 LBA ,一种线性地址,可以想象成虚拟地址与物理地址。系统将 LBA 地址最后会转化成为 CHS ,交给磁盘去进行数据读取。

结论

我们现在已经能够在硬件层面定位任何一个基本数据块了(扇区)。那么在系统软件上,就直接按照扇区(512字节,部分4096字节),进行IO交互吗?并不是

  • 如果操作系统直接使用硬件提供的数据大小进行交互,那么系统的IO代码,就和硬件强相关,换言之,如果硬件发生变化,系统必须跟着变化
  • 从目前来看,单次IO 512字节,还是太小了。IO单位小,意味着读取同样的数据内容,需要进行多次磁盘访问,会带来效率的降低。
  • 之前学习文件系统,就是在磁盘的基本结构下建立的,文件系统读取基本单位,就不是扇区,而是数据块。故,系统读取磁盘,是以块为单位的,基本单位是 4KB 。

磁盘随机访问(Random Access)与连续访问(Sequential Access)

随机访问:本次IO所给出的扇区地址和上次IO给出扇区地址不连续,这样的话磁头在两次IO操作之间需要作比较大的移动动作才能重新开始读/写数据。

连续访问:如果当次IO给出的扇区地址与上次IO结束的扇区地址是连续的,那磁头就能很快的开始这次IO操作,这样的多个IO操作称为连续访问。

因此尽管相邻的两次IO操作在同一时刻发出,但如果它们的请求的扇区地址相差很大的话也只能称为随机访问,而非连续访问。

磁盘是通过机械运动进行寻址的,随机访问不需要过多的定位,故效率比较高。

MySQL 与磁盘交互基本单位

而 MySQL 作为一款应用软件,可以想象成一种特殊的文件系统。它有着更高的IO场景,所以,为了提高基本的IO效率, MySQL 进行IO的基本单位是 16KB

磁盘这个硬件设备的基本单位是 512 字节,而 MySQL InnoDB引擎 使用 16KB 进行IO交互。即, MySQL 和磁盘进行数据交互的基本单位是 16KB 。这个基本数据单元,在 MySQL 这里叫做page(注意和系统的page区分)

建立共识

  • MySQL 中的数据文件,是以page为单位保存在磁盘当中的。
  • MySQL 的 CURD 操作,都需要通过计算,找到对应的插入位置,或者找到对应要修改或者查询的数据。
  • 而只要涉及计算,就需要CPU参与,而为了便于CPU参与,一定要能够先将数据移动到内存当中。
  • 所以在特定时间内,数据一定是磁盘中有,内存中也有。后续操作完内存数据之后,以特定的刷新策略,刷新到磁盘。而这时,就涉及到磁盘和内存的数据交互,也就是IO了。而此时IO的基本单位就是Page。
  • 为了更好的进行上面的操作, MySQL 服务器在内存中运行的时候,在服务器内部,就申请了被称为 Buffer Pool 的的大内存空间,来进行各种缓存。其实就是很大的内存空间,来和磁盘数据进行IO交互。
  • 为了更高的效率,一定要尽可能的减少系统和磁盘IO的次数

索引的理解

IO交互的基本单位是 Page,这时为什么呢?

  • 如上面的5条记录,如果MySQL要查找id=2的记录,第一次加载id=1,第二次加载id=2,一次一条记录,那么就需要2次IO。如果要找id=5,那么就需要5次IO。
  • 但,如果这5条(或者更多)都被保存在一个Page中(16KB,能保存很多记录),那么第一次IO查找id=2的时候,整个Page会被加载到MySQL的Buffer Pool中,这里完成了一次IO。但是往后如果在查找id=1,3,4,5等,完全不需要进行IO了,而是直接在内存中进行了。所以,就在单Page里面,大大减少了IO的次数。
  • 你怎么保证,用户一定下次找的数据,就在这个Page里面?我们不能严格保证,但是有很大概率,因为有局部性原理。往往IO效率低下的最主要矛盾不是IO单次数据量的大小,而是IO的次数。

理解单个Page

MySQL 中要管理很多数据表文件,而要管理好这些文件,就需要 先描述,再组织 ,我们目前可以简单理解成一个个独立文件是有一个或者多个Page构成的。

不同的 Page ,在 MySQL 中,都是 16KB ,使用 prev 和 next 构成双向链表。因为有主键的问题, MySQL 会默认按照主键给数据进行排序,从上面的Page内数据记录可以看出,数据是有序且彼此关联的。

为什么数据库在插入数据时要对其进行排序呢?

  • 插入数据时排序的目的,就是优化查询的效率。
  • 页内部存放数据的模块,实质上也是一个链表的结构,链表的特点也就是增删快,查询修改慢,所以优化查询的效率是必须的。
  • 正式因为有序,在查找的时候,从头到后都是有效查找,没有任何一个查找是浪费的,而且,如果运气好,是可以提前结束查找过程的。

理解多个Page

  • 通过上面的分析,我们知道,上面页模式中,只有一个功能,就是在查询某条数据的时候直接将一整页的数据加载到内存中,以减少硬盘IO次数,从而提高性能。但是,我们也可以看到,现在的页模式内部,实际上是采用了链表的结构,前一条数据指向后一条数据,本质上还是通过数据的逐条比较来取出特定的数据。
  • 如果有1千万条数据,一定需要多个Page来保存1千万条数据,多个Page彼此使用双链表链接起来,而且每个Page内部的数据也是基于链表的。那么,查找特定一条记录,也一定是线性查找。这效率就比较低了。

为了解决上述问题,专家们又引入了页目录

该页目录类似一本书的目录,比如找到某本书的指定章节,我们有两种方法

  1. 从头逐页的向后翻,直到找到指定章节
  2. 通过书提供的目录,发现指定章节在123页(假设),那么我们便直接翻到123页。同时,查找目录的方案,可以顺序找,不过因为目录较少,所以可以快速定位

本质上,书中的目录,是多花了纸张的,提高了效率,所以,目录,是一种“空间换时间的做法”。

单页情况

针对上面的单页Page,我们能否也引入目录呢?

当然可以

当前,在一个Page内部,我们引入了目录。比如,我们要查找id=4记录,之前必须线性遍历4次,才能拿到结果。现在直接通过目录2[3],直接进行定位新的起始位置,从而提高了效率。

多页情况

MySQL 中每一页的大小只有 16KB ,单个Page大小固定,所以随着数据量不断增大, 16KB 不可能存下所有的数据,那么必定会有多个页来存储数据。

  • 在单表数据不断被插入的情况下, MySQL 会在容量不足的时候,自动开辟新的Page来保存新的数据,然后通过指针的方式,将所有的Page组织起来。
  • 这样,我们就可以通过多个Page遍历,Page内部通过目录来快速定位数据。可是,貌似这样也有效率问题,在Page之间,也是需要 MySQL 遍历的,遍历意味着依旧需要进行大量的IO,将下一个Page加载到内存,进行线性检测。这样就显得我们之前的Page内部的目录,有点杯水车薪了

那么如何解决呢?解决方案,其实就是我们之前的思路,给Page也带上目录。

  • 使用一个目录项来指向某一页,而这个目录项存放的就是将要指向的页中存放的最小数据的键值
  • 和页内目录不同的地方在于,这种目录管理的级别是页,而页内目录管理的级别是行
  • 其中,每个目录项的构成是:键值+指针。

存在一个目录页来管理页目录,目录页中的数据存放的就是指向的那一页中最小的数据。有数据,就可通过比较,找到该访问那个Page,进而通过指针,找到下一个Page。目录页的本质也是页,普通页中存的数据是用户数据,而目录页中存的数据是普通页的地址。

可是,我们每次检索数据的时候,该从哪里开始呢?虽然顶层的目录页少了,但是还要遍历啊?不用担心,可以在加上一个目录页

这就是B+树,至此,我们已经完成了对表构建的索引

总结一下

  • Page分为目录页和数据页。目录页只放各个下级Page的最小键值。
  • 查找的时候,自定向下找,只需要加载部分目录页到内存,即可完成算法的整个查找过程,大大减少了IO次数

InnoDB 在建立索引结构来管理数据的时候,其他数据结构为何不行?

  • 链表:线性遍历效率低下
  • 二叉搜索树:退化问题,可能退化成为线性结构
  • AVL &&红黑树:虽然是平衡或者近似平衡,但是毕竟是二叉结构,相比较多阶B+,意味着树整体过高,大家都是自顶向下找,层高越低,意味着系统与硬盘更少的IO Page交互。
  • Hash:官方的索引实现方式中, MySQL 是支持HASH的,不过 InnoDB 和 MyISAM 并不支持.Hash跟进其算法特征,决定了虽然有时候也很快(O(1)),不过,在面对范围查找就明显不行。

B+ vs B

B树

B+树

这两棵树对我们最有意义的区别

  • B树节点,既有数据,又有Page指针,而B+,只有叶子节点有数据,其他目录页,只有键值和Page指针
  • B+叶子节点,全部相连,而B没有

那 MySQL 为何选择 B+ 树呢?

  • 节点不存储data,这样一个节点就可以存储更多的key。可以使得树更矮,所以IO操作次数更少。
  • 叶子节点相连,更便于进行范围查找。

聚簇索引 VS 非聚簇索引

MyISAM 存储引擎-主键索引

MyISAM 引擎同样使用B+树作为索引结果,叶节点的data域存放的是数据记录的地址。下图为 MyISAM 表的主索引,Col1 为主键。

其中, MyISAM 最大的特点是,将索引Page和数据Page分离,也就是叶子节点没有数据,只有对应数据的地址。相较于 InnoDB 索引, InnoDB 是将索引和数据放在一起的。


其中, MyISAM 这种用户数据与索引数据分离的索引方案,叫做非聚簇索引


其中, InnoDB 这种用户数据与索引数据在一起索引方案,叫做聚簇索引

当然, MySQL 除了默认会建立主键索引外,我们用户也有可能建立按照其他列信息建立的索引,一般这种索引可以叫做辅助(普通)索引。对于 MyISAM ,建立辅助(普通)索引和主键索引没有差别,无非就是主键不能重复,而非主键可重复。

下图就是基于 MyISAM 的 Col2 建立的索引,和主键索引没有差别

同样, InnoDB 除了主键索引,用户也会建立辅助(普通)索引,我们以上表中的 Col3 建立对应的辅助索引如下


可以看到, InnoDB 的非主键索引中叶子节点并没有数据,而只有对应记录的key值。

所以通过辅助(普通)索引,找到目标记录,需要两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。这种过程,就叫做回表查询

为何 InnoDB 针对这种辅助(普通)索引的场景,不给叶子节点也附上数据呢?原因就是太浪费空间了。

索引操作

创建主键索引

  1. 第一种方式

在创建表的时候,直接在字段名后指定 primary key

删除索引

  1. 第二种方式

在创建表的最后,指定某列或某几列为主键索引

create table user2(id int, name varchar(30), primary key(id));
  1. 第三种方式

创建表以后再添加主键

create table user3(id int, name varchar(30));
alter table user3 add primary key(id);

主键索引的特点

  • 一个表中,最多有一个主键索引
  • 主键索引的效率高(主键不可重复)
  • 创建主键索引的列,它的值不能为null,且不能重复
  • 主键索引的列基本上是int

唯一索引的创建

  1. 第一种方式

在表定义时,在某列后直接指定unique唯一属性

删除索引

  1. 第二种方式

创建表时,在表的后面指定某列或某几列为unique

create table user5(id int primary key, name varchar(30), unique(name));
  1. 第三种方式
create table user6(id int primary key, name varchar(30);
alter table user6 add unique(name);

唯一索引的特点:

  • 一个表中,可以有多个唯一索引
  • 查询效率高
  • 如果在某一列建立唯一索引,必须保证这列不能有重复数据
  • 如果一个唯一索引上指定not null,作用等价于主键索引

普通索引的创建

  1. 第一种方式

在表的定义最后,指定某列为索引

create table user8(id int primary key, 
	name varchar(20), 
	email varchar(30), 
	index(name)
);
  1. 第二种方式

创建完表以后指定某列为普通索引

create table user9(id int primary key, name varchar(20), email varchar(30)); 
alter table user9 add index(name)
  1. 第三种方式

创建完表以后,再创建一列,该列为索引

create table user10(id int primary key, name varchar(20), email varchar(30));
create index idx_name on user10(name);

普通索引的特点:

  • 一个表中可以有多个普通索引,普通索引在实际开发中用的比较多
  • 如果某列需要创建索引,但是该列有重复的值,那么我们就应该使用普通索引

注意:索引虽然能提高产找的速度,但是会降低增删的效率,因为需要维护B+树的数据结构。

全文索引的创建

当对文章字段或有大量文字的字段进行检索时,会使用到全文索引。MySQL提供全文索引机制,但是有要求,要求表的存储引擎必须是MyISAM,而且默认的全文索引支持英文,不支持中文。如果对中文进行全文检索,可以使用sphinx的中文版(coreseek)。

查询有database数据

使用上述查询方式,虽然查询出数据,但是没有使用到全文索引,可以用explain工具查看是否使用到索引。

那么如何使用全文索引呢

使用explain工具查看

查询索引

  1. 第一种方法: show keys from 表名;

  1. 第二种方法:show index from 表名;

  1. 第三种方法(信息比较简略): desc 表名;

删除索引

  • 删除主键索引: alter table 表名 drop primary key;

  • 其他索引的删除: alter table 表名 drop index 索引名;(索引名是show keys from 表名中的Key_name 字段)

alter table user2 drop index idx_name;
  • drop index 索引名 on 表名

drop index name on user4;

索引创建原则

  • 比较频繁作为查询条件的字段应该创建索引
  • 唯一性太差的字段不适合单独创建索引,即使频繁作为查询条件
  • 更新非常频繁的字段不适合作创建索引
  • 不会出现在where子句中的字段不该创建索引

其他概念

  • 复合索引:用户可以在多个列上建立索引,这种索引叫做复合索引(组合索引)
  • 索引最左匹配原则:最左优先,以最左边的为起点任何连续的索引都能匹配上。同时遇到范围查询(>、<、between、like)就会停止匹配。
  • 索引覆盖:MySQL 执行计划 explain 结果里的 key 有使用索引,如果 select 后面查询的字段都可以从这个索引的树中获取,这种情况一般可以说是用到了覆盖索引。

以上是关于MySQL 索引的主要内容,如果未能解决你的问题,请参考以下文章

MySQL索引

MySQL 索引

MySQL 索引

MySQL 索引

MySql索引

MySql索引