kafka学习之路——提高

Posted 渔夫数据库笔记

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了kafka学习之路——提高相关的知识,希望对你有一定的参考价值。

kafka学习之路(二)——提高
消息发送流程


因为Kafka内在就是分布式的,一个Kafka集群通常包括多个代理。为了均衡负载,将话题分成多个分区,每个代理存储一或多个分区。多个生产者和消费者能够同时生产和获取消息。

过程:

1.Producer根据指定的partition方法(round-robin、hash等),将消息发布到指定topic的partition里面

2.kafka集群接收到Producer发过来的消息后,将其持久化到硬盘,并保留消息指定时长(可配置),而不关注消息是否被消费。

3.Consumer从kafka集群pull数据,并控制获取消息的offset

 

原理:

生产者使用自己的序列化方法对消息内容进行编码。然后向broker发起消息。为了提高效率,一个发布请求中可以包含一组消息。

消费者订阅话题,并为话题创建一个或多个消息流。发布到该话题的消息被均衡的分发到这些流中。

每个消息流为不断产生的消息提供了迭代接口。

消费者迭代流中每一条消息,并处理消息的有效负载。

迭代器不会停止。如果当前没有消息,迭代器将阻塞直至有新的消息发布到该话题

 

 

 

kafka存储
Kafka的存储布局非常简单。话题的每个分区对应一个逻辑日志。物理上,一个日志为相同大小的一组分段文件。每次生产者发布消息到一个分区,代理就将消息追加到最后一个段文件中。当发布的消息数量达到设定值或者经过一定的时间后,段文件真正写入磁盘中。写入完成后,消息公开给消费者。

与传统的消息系统不同,Kafka系统中存储的消息没有明确的消息Id。消息通过日志中的逻辑偏移量来公开。这样就避免了维护配套密集寻址,用于映射消息ID到实际消息地址的随机存取索引结构的开销。消息偏移量是增量的,但不连续。要计算下一消息的偏移量,可以在其逻辑偏移的基础上加上当前消息的长度。

消费者始终从特定分区顺序地获取消息,如果消费者知道特定消息的偏移量,也就说明消费者已经消费了之前的所有消息。消费者向代理发出异步拉请求,准备字节缓冲区用于消费。每个异步拉请求都包含要消费的消息偏移量。Kafka利用sendfile API高效地从代理的日志段文件中分发字节给消费者。

代理
不同于其他消息系统,kafka代理是无状态的,即消费者必须维护已消费的状态消息,而代理完全不管。

这种设计的创新在于:

·        代理以一个基于时间的SLA应用于保留策略。当消息在代理中超过一定时间后,将会被自动删除。

·        消费者可以故意倒回到老的偏移量再次消费数据。虽然这违法了队列的常见约定,但常见于许多业务中。

与zookeeper的关系
kafka使用ZooKeeper用于管理、协调代理。每个Kafka代理通过Zookeeper协调其他Kafka代理。

当Kafka系统中新增了代理或某个代理失效时,Zookeeper服务将通知生产者和消费者。生产者与消费者据此开始与其他代理协调工作。

Zookeeper在Kakfa中扮演的角色:Kafka将元数据信息保存在Zookeeper中,但是发送给Topic本身的数据是不会发到Zk上的


·        kafka使用zookeeper来实现动态的集群扩展,不需要更改客户端(producer和consumer)的配置。broker会在zookeeper注册并保持相关的元数据(topic,partition信息等)更新。

·        而客户端会在zookeeper上注册相关的watcher。一旦zookeeper发生变化,客户端能及时感知并作出相应调整。这样就保证了添加或去除broker时,各broker间仍能自动实现负载均衡。这里的客户端指的是Kafka的消息生产端(Producer)和消息消费端(Consumer)

·        Broker端使用zookeeper来注册broker信息,以及监测partitionleader存活性.

·        Consumer端使用zookeeper用来注册consumer信息,其中包括consumer消费的partition列表等,同时也用来发现broker列表,并和partitionleader建立socket连接,并获取消息.

·        Zookeer和Producer没有建立关系,只和Brokers、Consumers建立关系以实现负载均衡,即同一个ConsumerGroup中的Consumers可以实现负载均衡(因为Producer是瞬态的,可以发送后关闭,无需直接等待)

 

kafka的设计:


1、吞吐量

高吞吐是kafka需要实现的核心目标之一,为此kafka做了以下一些设计:

1. 数据磁盘持久化:消息不在内存中cache,直接写入到磁盘,充分利用磁盘的顺序读写性能

2. zero-copy:减少IO操作步骤

3. 数据批量发送

4. 数据压缩

5.  Topic划分为多个partition,提高parallelism(并行)

2、  负载均衡

1.   producer根据用户指定的算法,将消息发送到指定的partition

2.   存在多个partiiton,每个partition有自己的replica,每个replica分布在不同的Broker节点上

3.   多个partition需要选取出leadpartition,lead partition负责读写,并由zookeeper负责fail over

4.   通过zookeeper管理broker与consumer的动态加入与离开

3、拉取系统

由于kafka broker会持久化数据,broker没有内存压力,因此,consumer非常适合采取pull的方式消费数据,具有以下几点好处:

1. 简化kafka设计

2. consumer根据消费能力自主控制消息拉取速度

3. consumer根据自身情况自主选择消费模式,例如批量,重复消费,从尾端开始消费等

 

4、可扩展性

当需要增加broker结点时,新增的broker会向zookeeper注册,而producer及consumer会根据注册在zookeeper上的watcher感知这些变化,并及时作出调整。

kafka的应用场景:


1.消息队列

比起大多数的消息系统来说,Kafka有更好的吞吐量,内置的分区,冗余及容错性,这让Kafka成为了一个很好的大规模消息处理应用的解决方案。消息系统一般吞吐量相对较低,但是需要更小的端到端延时,并尝尝依赖于Kafka提供的强大的持久性保障。在这个领域,Kafka足以媲美传统消息系统,如ActiveMR或RabbitMQ。

2.行为跟踪

Kafka的另一个应用场景是跟踪用户浏览页面、搜索及其他行为,以发布-订阅的模式实时记录到对应的topic里。那么这些结果被订阅者拿到后,就可以做进一步的实时处理,或实时监控,或放到hadoop/离线数据仓库里处理。

3.元信息监控

作为操作记录的监控模块来使用,即汇集记录一些操作信息,可以理解为运维性质的数据监控吧。

4.日志收集

使用Kafka代替日志聚合(logaggregation)。日志聚合一般来说是从服务器上收集日志文件,然后放到一个集中的位置(文件服务器或HDFS)进行处理。然而Kafka忽略掉文件的细节,将其更清晰地抽象成一个个日志或事件的消息流。这就让Kafka处理过程延迟更低,更容易支持多数据源和分布式数据处理。比起以日志为中心的系统比如Scribe或者Flume来说,Kafka提供同样高效的性能和因为复制导致的更高的耐用性保证,以及更低的端到端延迟。

5.流处理

这个场景可能比较多,也很好理解。保存收集流数据,以提供之后对接的Storm或其他流式计算框架进行处理。很多用户会将那些从原始topic来的数据进行阶段性处理,汇总,扩充或者以其他的方式转换到新的topic下再继续后面的处理。例如一个文章推荐的处理流程,可能是先从RSS数据源中抓取文章的内容,然后将其丢入一个叫做“文章”的topic中;后续操作可能是需要对这个内容进行清理,比如回复正常数据或者删除重复数据,最后再将内容匹配的结果返还给用户。这就在一个独立的topic之外,产生了一系列的实时数据处理的流程。Strom和Samza是非常著名的实现这种类型数据转换的框架。

6.事件源

事件源是一种应用程序设计的方式,该方式的状态转移被记录为按时间顺序排序的记录序列。Kafka可以存储大量的日志数据,这使得它成为一个对这种方式的应用来说绝佳的后台。比如动态汇总(News feed)。

7.持久性日志(commit log)

Kafka可以为一种外部的持久性日志的分布式系统提供服务。这种日志可以在节点间备份数据,并为故障节点数据回复提供一种重新同步的机制。Kafka中日志压缩功能为这种用法提供了条件。在这种用法中,Kafka类似于Apache BookKeeper项目。

kafka的设计要点:


1、直接使用linux 文件系统的cache,来高效缓存数据。

2、采用linux Zero-Copy提高发送性能。传统的数据发送需要发送4次上下文切换,采用sendfile系统调用之后,数据直接在内核态交换,系统上下文切换减少为2次。根据测试结果,可以提高60%的数据发送性能。Zero-Copy详细的技术细节可以参考:https://www.ibm.com/developerworks/linux/library/j-zerocopy/

3、数据在磁盘上存取代价为O(1)。kafka以topic来进行消息管理,每个topic包含多个part(ition),每个part对应一个逻辑log,有多个segment组成。每个segment中存储多条消息,消息id由其逻辑位置决定,即从消息id可直接定位到消息的存储位置,避免id到位置的额外映射。每个part在内存中对应一个index,记录每个segment中的第一条消息偏移。发布者发到某个topic的消息会被均匀的分布到多个part上(随机或根据用户指定的回调函数进行分布),broker收到发布消息往对应part的最后一个segment上添加该消息,当某个segment上的消息条数达到配置值或消息发布时间超过阈值时,segment上的消息会被flush到磁盘,只有flush到磁盘上的消息订阅者才能订阅到,segment达到一定的大小后将不会再往该segment写数据,broker会创建新的segment。

4 、显式分布式,即所有的producer、broker和consumer都会有多个,均为分布式的。Producer和broker之间没有负载均衡机制。broker和consumer之间利用zookeeper进行负载均衡。所有broker和consumer都会在zookeeper中进行注册,且zookeeper会保存他们的一些元数据信息。如果某个broker和consumer发生了变化,所有其他的broker和consumer都会得到通知。
 

以上是关于kafka学习之路——提高的主要内容,如果未能解决你的问题,请参考以下文章

三天掌握Kafka 消息队列 小白到专家之路!

kafka学习之路——入门

译Kafka学习之路

带你逆袭kafka之路

Kafka的入门及安装使用

Kafka学习之路 Kafka的安装