求最短路径(Bellman-Ford算法与Dijkstra算法)

Posted yunlambert

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了求最短路径(Bellman-Ford算法与Dijkstra算法)相关的知识,希望对你有一定的参考价值。

前言

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。
在网络路由中,RIP协议(距离向量路由算法)一般用Bellman-Ford算法,同时由于简单性所以也适用于分布式系统;但是它的复杂度是O(VE),比Dijkstra算法要慢上许多。而OSPF协议,链路状态分组创建的时候一般用Dijkstra算法,因为它的速度快。

Bellman-Ford算法

算法步骤
1.初始化:将除源点外的所有顶点的最短距离估计值 dist[v] ← +∞, dist[s] ←0;
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 dist[v]中。

该算法是利用动态规划的思想,自底向上的方式计算最短路径。

#include <iostream>
using namespace std;
const int maxnum = 100;
const int maxint = 99999;

// 边,
typedef struct Edge {
    int u, v;    // 起点,重点
    int weight;  // 边的权值
}Edge;

Edge edge[maxnum];     // 保存边的值
int  dist[maxnum];     // 结点到源点最小距离

int nodenum, edgenum, source;    // 结点数,边数,源点

                                 // 初始化图
void init()
{
    // 输入结点数,边数,源点
    cin >> nodenum >> edgenum >> source;
    for (int i = 1; i <= nodenum; ++i)
        dist[i] = maxint;
    dist[source] = 0;
    for (int i = 1; i <= edgenum; ++i)
    {
        cin >> edge[i].u >> edge[i].v >> edge[i].weight;
        if (edge[i].u == source)          //注意这里设置初始情况
            dist[edge[i].v] = edge[i].weight;
    }
}

// 松弛计算
void relax(int u, int v, int weight)
{
    if (dist[v] > dist[u] + weight)
        dist[v] = dist[u] + weight;
}

bool Bellman_Ford()
{
    for (int i = 1; i <= nodenum - 1; ++i)
        for (int j = 1; j <= edgenum; ++j)
            relax(edge[j].u, edge[j].v, edge[j].weight);
    bool flag = 1;
    // 判断是否有负环路
    for (int i = 1; i <= edgenum; ++i)
        if (dist[edge[i].v] > dist[edge[i].u] + edge[i].weight)
        {
            flag = 0;
            break;
        }
    return flag;
}
int main()
{
    init();
    if (Bellman_Ford())
        for (int i = 1; i <= nodenum; i++)
            cout << dist[i] << endl;
    system("pause");
    return 0;
}

Dijlstra算法

1.初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为”起点s到该顶点的距离”[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。
2.从U中选出”距离最短的顶点k”,并将顶点k加入到S中;同时,从U中移除顶点k。
3.更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。
4.重复步骤(2)和(3),直到遍历完所有顶点。

参照这篇博客可以对Dijlstra算法有一个清楚地理解。

#include <iostream>
using namespace std;
 
const int maxnum = 100;
const int maxint = 999999;
 
 
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum])
{
    bool s[maxnum];    // 判断是否已存入该点到S集合中
    for(int i=1; i<=n; ++i)
    {
        dist[i] = c[v][i];
        s[i] = 0;     // 初始都未用过该点
        if(dist[i] == maxint)
            prev[i] = 0;
        else
            prev[i] = v;
    }
    dist[v] = 0;
    s[v] = 1;
 
    // 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
    // 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
    for(int i=2; i<=n; ++i)
    {
        int tmp = maxint;
        int u = v;
        // 找出当前未使用的点j的dist[j]最小值
        for(int j=1; j<=n; ++j)
            if((!s[j]) && dist[j]<tmp)
            {
                u = j;              // u保存当前邻接点中距离最小的点的号码
                tmp = dist[j];
            }
        s[u] = 1;    // 表示u点已存入S集合中
 
        // 更新dist
        for(int j=1; j<=n; ++j)
            if((!s[j]) && c[u][j]<maxint)
            {
                int newdist = dist[u] + c[u][j];
                if(newdist < dist[j])
                {
                    dist[j] = newdist;
                    prev[j] = u;
                }
            }
    }
}
 
void searchPath(int *prev,int v, int u)
{
    int que[maxnum];
    int tot = 1;
    que[tot] = u;
    tot++;
    int tmp = prev[u];
    while(tmp != v)
    {
        que[tot] = tmp;
        tot++;
        tmp = prev[tmp];
    }
    que[tot] = v;
    for(int i=tot; i>=1; --i)
        if(i != 1)
            cout << que[i] << " -> ";
        else
            cout << que[i] << endl;
}
 
int main()
{
    freopen("input.txt", "r", stdin);
    // 各数组都从下标1开始
    int dist[maxnum];     // 表示当前点到源点的最短路径长度
    int prev[maxnum];     // 记录当前点的前一个结点
    int c[maxnum][maxnum];   // 记录图的两点间路径长度
    int n, line;             // 图的结点数和路径数
 
    // 输入结点数
    cin >> n;
    // 输入路径数
    cin >> line;
    int p, q, len;          // 输入p, q两点及其路径长度
 
    // 初始化c[][]为maxint
    for(int i=1; i<=n; ++i)
        for(int j=1; j<=n; ++j)
            c[i][j] = maxint;
 
    for(int i=1; i<=line; ++i)  
    {
        cin >> p >> q >> len;
        if(len < c[p][q])       // 有重边
        {
            c[p][q] = len;      // p指向q
            c[q][p] = len;      // q指向p,这样表示无向图
        }
    }
 
    for(int i=1; i<=n; ++i)
        dist[i] = maxint;
    for(int i=1; i<=n; ++i)
    {
        for(int j=1; j<=n; ++j)
            printf("%8d", c[i][j]);
        printf("
");
    }
 
    Dijkstra(n, 1, dist, prev, c);
 
    // 最短路径长度
    cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;
 
    // 路径
    cout << "源点到最后一个顶点的路径为: ";
    searchPath(prev, 1, n);
}

以上是关于求最短路径(Bellman-Ford算法与Dijkstra算法)的主要内容,如果未能解决你的问题,请参考以下文章

求最短路径的三种算法: Ford, Dijkstra和Floyd

Bellman-ford 单源最短路径算法

求最短路的多种方法比较及应用

最短路径算法——Dijkstra算法

算法入门之完美单源最短路径:Bellman-Ford(贝尔曼-福特)算法

(模板)hdoj2544(最短路--bellman-ford算法)