求最短路径(Bellman-Ford算法与Dijkstra算法)
Posted yunlambert
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了求最短路径(Bellman-Ford算法与Dijkstra算法)相关的知识,希望对你有一定的参考价值。
前言
Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。
在网络路由中,RIP协议(距离向量路由算法)一般用Bellman-Ford算法,同时由于简单性所以也适用于分布式系统;但是它的复杂度是O(VE),比Dijkstra算法要慢上许多。而OSPF协议,链路状态分组创建的时候一般用Dijkstra算法,因为它的速度快。
Bellman-Ford算法
算法步骤
1.初始化:将除源点外的所有顶点的最短距离估计值 dist[v] ← +∞, dist[s] ←0;
2.迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)
3.检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 dist[v]中。
该算法是利用动态规划的思想,自底向上的方式计算最短路径。
#include <iostream>
using namespace std;
const int maxnum = 100;
const int maxint = 99999;
// 边,
typedef struct Edge {
int u, v; // 起点,重点
int weight; // 边的权值
}Edge;
Edge edge[maxnum]; // 保存边的值
int dist[maxnum]; // 结点到源点最小距离
int nodenum, edgenum, source; // 结点数,边数,源点
// 初始化图
void init()
{
// 输入结点数,边数,源点
cin >> nodenum >> edgenum >> source;
for (int i = 1; i <= nodenum; ++i)
dist[i] = maxint;
dist[source] = 0;
for (int i = 1; i <= edgenum; ++i)
{
cin >> edge[i].u >> edge[i].v >> edge[i].weight;
if (edge[i].u == source) //注意这里设置初始情况
dist[edge[i].v] = edge[i].weight;
}
}
// 松弛计算
void relax(int u, int v, int weight)
{
if (dist[v] > dist[u] + weight)
dist[v] = dist[u] + weight;
}
bool Bellman_Ford()
{
for (int i = 1; i <= nodenum - 1; ++i)
for (int j = 1; j <= edgenum; ++j)
relax(edge[j].u, edge[j].v, edge[j].weight);
bool flag = 1;
// 判断是否有负环路
for (int i = 1; i <= edgenum; ++i)
if (dist[edge[i].v] > dist[edge[i].u] + edge[i].weight)
{
flag = 0;
break;
}
return flag;
}
int main()
{
init();
if (Bellman_Ford())
for (int i = 1; i <= nodenum; i++)
cout << dist[i] << endl;
system("pause");
return 0;
}
Dijlstra算法
1.初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为”起点s到该顶点的距离”[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。
2.从U中选出”距离最短的顶点k”,并将顶点k加入到S中;同时,从U中移除顶点k。
3.更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。
4.重复步骤(2)和(3),直到遍历完所有顶点。
参照这篇博客可以对Dijlstra算法有一个清楚地理解。
#include <iostream>
using namespace std;
const int maxnum = 100;
const int maxint = 999999;
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum])
{
bool s[maxnum]; // 判断是否已存入该点到S集合中
for(int i=1; i<=n; ++i)
{
dist[i] = c[v][i];
s[i] = 0; // 初始都未用过该点
if(dist[i] == maxint)
prev[i] = 0;
else
prev[i] = v;
}
dist[v] = 0;
s[v] = 1;
// 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
// 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
for(int i=2; i<=n; ++i)
{
int tmp = maxint;
int u = v;
// 找出当前未使用的点j的dist[j]最小值
for(int j=1; j<=n; ++j)
if((!s[j]) && dist[j]<tmp)
{
u = j; // u保存当前邻接点中距离最小的点的号码
tmp = dist[j];
}
s[u] = 1; // 表示u点已存入S集合中
// 更新dist
for(int j=1; j<=n; ++j)
if((!s[j]) && c[u][j]<maxint)
{
int newdist = dist[u] + c[u][j];
if(newdist < dist[j])
{
dist[j] = newdist;
prev[j] = u;
}
}
}
}
void searchPath(int *prev,int v, int u)
{
int que[maxnum];
int tot = 1;
que[tot] = u;
tot++;
int tmp = prev[u];
while(tmp != v)
{
que[tot] = tmp;
tot++;
tmp = prev[tmp];
}
que[tot] = v;
for(int i=tot; i>=1; --i)
if(i != 1)
cout << que[i] << " -> ";
else
cout << que[i] << endl;
}
int main()
{
freopen("input.txt", "r", stdin);
// 各数组都从下标1开始
int dist[maxnum]; // 表示当前点到源点的最短路径长度
int prev[maxnum]; // 记录当前点的前一个结点
int c[maxnum][maxnum]; // 记录图的两点间路径长度
int n, line; // 图的结点数和路径数
// 输入结点数
cin >> n;
// 输入路径数
cin >> line;
int p, q, len; // 输入p, q两点及其路径长度
// 初始化c[][]为maxint
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j)
c[i][j] = maxint;
for(int i=1; i<=line; ++i)
{
cin >> p >> q >> len;
if(len < c[p][q]) // 有重边
{
c[p][q] = len; // p指向q
c[q][p] = len; // q指向p,这样表示无向图
}
}
for(int i=1; i<=n; ++i)
dist[i] = maxint;
for(int i=1; i<=n; ++i)
{
for(int j=1; j<=n; ++j)
printf("%8d", c[i][j]);
printf("
");
}
Dijkstra(n, 1, dist, prev, c);
// 最短路径长度
cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;
// 路径
cout << "源点到最后一个顶点的路径为: ";
searchPath(prev, 1, n);
}
以上是关于求最短路径(Bellman-Ford算法与Dijkstra算法)的主要内容,如果未能解决你的问题,请参考以下文章
求最短路径的三种算法: Ford, Dijkstra和Floyd