OpenHarmony 平头哥玄铁架构 轻量系统移植—润和W800移植分享
Posted 润和HiHope社区
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了OpenHarmony 平头哥玄铁架构 轻量系统移植—润和W800移植分享相关的知识,希望对你有一定的参考价值。
本方案基于OpenHarmony LiteOS-M内核,使用联盛德W800芯片的润和软件海王星系列[Neptune100开发板](https://gitee.com/openharmony-sig/device_board_hihope),进行开发移植。移植架构采用`Board`与`SoC`分离方案,支持通过Kconfig图形化配置编译选项,增加玄铁`ck804ef`架构移植,实现了`HDF`、`XTS`等子系统及组件的适配。
适配准备
准备ubuntu20.04系统环境,安装[csky-abiv2-elf-gcc](https://occ.t-head.cn/community/download?id=3885366095506644992)交叉编译工具链。
编译构建
目录规划
本方案的目录结构使用[Board和Soc解耦的思路](https://gitee.com/openharmony-sig/sig-content/blob/master/devboard/docs/board-soc-arch-design.md):
芯片适配目录规划为:
```
device
├── board --- 单板厂商目录
│ └── hihope --- 单板厂商名字:HiHope
│ └── neptune100 --- 单板名:Neptune100
└── soc --- SoC厂商目录
└── winnermicro --- SoC厂商名字:联盛德
└── wm800 --- SoC Series名:w800系列芯片
```
产品样例目录规划为:
```
vendor
└── hihope --- 开发产品样例厂商目录,润和软件的产品样例
├── neptune_iotlink_demo --- 产品名字:Neptune100产品样例代码
└── ...
```
产品定义
`vendor/hihope/neptune_iotlink_demo/config.json`文件下,描述了产品使用的内核、单板、子系统等信息。其中,内核、单板型号、单板厂商需提前规划好,是预编译指令`hb set`关注的。例如:
```
"product_name": "neptune_iotlink_demo", --- 产品名
"ohos_version": "OpenHarmony 3.1", --- 使用的OS版本
"type":"mini", --- 系统类型: mini
"version": "3.0", --- 系统版本: 3.0
"device_company": "hihope", --- 单板厂商:hihope
"board": "neptune100", --- 单板名:neptune100
"kernel_type": "liteos_m", --- 内核类型:liteos_m
"kernel_version": "3.0.0", --- 内核版本:3.0.0
"subsystems": [] --- 子系统
```
填入的信息与规划的目录相对应,其中`device_company`和`board`用于关联出`device/board/<device_company>/`目录。
单板配置
关联到的<board>目录下,在`device/board/hihope/neptune100/liteos_m`目录下放置`config.gni`文件,该配置文件用于描述该单板信息,包括CPU型号、交叉编译工具链及全局编译、链接参数等重要信息:
```
# Kernel type, e.g. "linux", "liteos_a", "liteos_m".
kernel_type = "liteos_m"
# Kernel version.
kernel_version = "3.0.0"
# Board CPU type, e.g. "cortex-a7", "riscv32".
board_cpu = "ck804ef"
# Board arch, e.g. "armv7-a", "rv32imac".
board_arch = "ck803"
# Toolchain name used for system compiling.
# E.g. gcc-arm-none-eabi, arm-linux-harmonyeabi-gcc, ohos-clang, riscv32-unknown-elf.
# Note: The default toolchain is "ohos-clang". It's not mandatory if you use the default toolchain.
board_toolchain = "csky-elfabiv2-gcc"
#use_board_toolchain = true
# The toolchain path installed, it's not mandatory if you have added toolchain path to your ~/.bashrc.
board_toolchain_path = ""
# Compiler prefix.
board_toolchain_prefix = "csky-elfabiv2-"
# Compiler type, "gcc" or "clang".
board_toolchain_type = "gcc"
# config.json parse
if (product_path != "")
product_conf = read_file("$product_path/config.json", "json")
product_name = product_conf.product_name
bin_list = product_conf.bin_list
# Board related common compile flags.
board_cflags = [
"-mcpu=ck804ef",
"-mhard-float",
"-DGCC_COMPILE=1",
"-DTLS_CONFIG_CPU_XT804=1",
"-DNIMBLE_FTR=1",
"-D__CSKY_V2__=1",
"-DCPU_CK804",
"-O2",
"-g3",
"-Wall",
"-ffunction-sections",
"-MMD",
"-MP",
]
board_cxx_flags = board_cflags
board_asmflags = [
"-mcpu=ck804ef",
"-DCPU_CK804",
]
board_ld_flags = []
# Board related headfiles search path.
board_include_dirs = []
# Board adapter dir for OHOS components.
board_adapter_dir = ""
# Sysroot path.
board_configed_sysroot = ""
# Board storage type, it used for file system generation.
storage_type = ""
```
预编译
在工程根目录下输入预编译指令`hb set`可显示相关产品信息,如下:
```
hb set
OHOS Which product do you need? (Use arrow keys)
hihope
> neptune_iotlink_demo
OHOS Which product do you need? neptune_iotlink_demo
```
执行`hb set`后,会在根目录下自动生成`ohos_config.json`文件,文件中会列出待编译的产品信息。
通过`hb env`可以查看选择出来的预编译环境变量。
```
[OHOS INFO] root path: /home/xxxx/openharmony_w800
[OHOS INFO] board: neptune100
[OHOS INFO] kernel: liteos_m
[OHOS INFO] product: neptune_iotlink_demo
[OHOS INFO] product path: /home/xxxx/openharmony_w800/vendor/hihope/neptune_iotlink_demo
[OHOS INFO] device path: /home/xxxx/openharmony_w800/device/board/hihope/neptune100/liteos_m
[OHOS INFO] device company: hihope
```
至此,预编译适配完成,但工程还不能执行hb build进行编译,还需要准备好后续的LiteOS-M内核移植。
内核移植
Kconfig适配
在`kernel/liteos_m`的编译中,需要在相应的单板以及SoC目录下使用`Kconfig`文件进行索引。
1. 在`vendor/hihope/neptune_iotlink_demo`目录下创建kernel_configs目录,并创建`debug.config`空文件。
2. 打开`kernel/liteos_m/Kconfig`文件,可以看到在该文件通过orsource命令导入了`device/board`和`device/soc`下多个`Kconfig`文件,后续需要创建并修改这些文件:
```
orsource "../../device/board/*/Kconfig.liteos_m.shields"
orsource "../../device/board/$(BOARD_COMPANY)/Kconfig.liteos_m.defconfig.boards"
orsource "../../device/board/$(BOARD_COMPANY)/Kconfig.liteos_m.boards"
orsource "../../device/soc/*/Kconfig.liteos_m.defconfig"
orsource "../../device/soc/*/Kconfig.liteos_m.series"
orsource "../../device/soc/*/Kconfig.liteos_m.soc"
```
3. 在`device/board/hihope`下创建相应的的`Kconfig`文件:
```
├── neptune100 --- neptune100单板配置目录
│ ├── Kconfig.liteos_m.board --- 单板的配置选项
│ ├── Kconfig.liteos_m.defconfig.board --- 单板的默认配置项
│ └── liteos_m
│ └── config.gni --- 单板的配置文件
├── Kconfig.liteos_m.boards --- 单板厂商下Boards配置信息
└── Kconfig.liteos_m.defconfig.boards --- 单板厂商下Boards默认配置信息
```
4. 修改`Board`目录下`Kconfig`文件内容:
在 `neptune100/Kconfig.liteos_m.board`中添加,
```
config BOARD_NEPTUNE100
bool "select board neptune100"
depends on SOC_WM800
```
配置只有SOC_WM800被选后,BOARD_NEPTUNE100才可被选。
在 `neptune100/Kconfig.liteos_m.defconfig.board`中添加,
```
if BOARD_NEPTUNE100
endif #BOARD_NEPTUNE100
```
用于添加 BOARD_NEPTUNE100默认配置
5. 在`device/soc/winnermicro`下创建相应的的`Kconfig`文件:
```
├── wm800 --- W800系列
│ ├── Kconfig.liteos_m.defconfig.wm800 --- W800芯片默认配置
│ ├── Kconfig.liteos_m.defconfig.series --- W800系列默认配置
│ ├── Kconfig.liteos_m.series --- W800系列配置
│ └── Kconfig.liteos_m.soc --- W800芯片配置
├── Kconfig.liteos_m.defconfig --- SoC默认配置
├── Kconfig.liteos_m.series --- Series配置
└── Kconfig.liteos_m.soc --- SoC配置
```
6. 修改`Soc`目录下`Kconfig`文件内容:
在`wm800/Kconfig.liteos_m.defconfig.wm800`中添加:
```
config SOC
string
default "wm800"
depends on SOC_WM800
```
在`wm800/Kconfig.liteos_m.defconfig.series`中添加:
```
if SOC_SERIES_WM800
rsource "Kconfig.liteos_m.defconfig.wm800"
config SOC_SERIES
string
default "wm800"
endif
```
在 `wm800/Kconfig.liteos_m.series`中添加:
```
config SOC_SERIES_WM800
bool "winnermicro 800 Series"
select ARM
select SOC_COMPANY_WINNERMICRO --- 选择 SOC_COMPANY_WINNERMICRO
select CPU_XT804
help
Enable support for winnermicro 800 series
```
在选择了 SOC_SERIES_WM800之后,才可选 `wm800/Kconfig.liteos_m.soc`文件中的 SOC_WM800:
```
choice
prompt "Winnermicro 800 series SoC"
depends on SOC_SERIES_WM800
config SOC_WM800 --- 选择 SOC_WM800
bool "SoC WM800"
endchoice
```
综上所述,要编译单板BOARD_NEPTUNE100,则要分别选中:SOC_COMPANY_WINNERMICRO、SOC_SERIES_WM800、SOC_WM800
7. 在`kernel/liteos_m`中执行`make menuconfig`进行选择配置,能够对SoC Series进行选择:
![w800_select.json](figures/w800_select.png)
配置后的文件会默认保存在`vendor/hihope/neptune_iotlink_demo/kernel_configs/debug.config`,也可以直接填写`debug.config`:
```
LOSCFG_PLATFORM_QEMU_CSKY_SMARTL=y
LOSCFG_SOC_SERIES_WM800=y
```
模块化编译
`Board`和`SoC`的编译采用模块化的编译方法,从`kernel/liteos_m/BUILD.gn`开始逐级向下递增。本方案的适配过程如下:
1. 在`device/board/hihope`中新建文件`BUILD.gn`,新增内容如下:
```
if (ohos_kernel_type == "liteos_m")
import("//kernel/liteos_m/liteos.gni")
module_name = get_path_info(rebase_path("."), "name")
module_group(module_name)
modules = [
"neptune100", --- 单板模块
"shields",
]
```
在上述`BUILD.gn`中,neptune100以及shields即是按目录层级组织的模块名。
2. 在`device/soc/winnermicro`中,新建文件`BUILD.gn`,按目录层级组织,新增内容如下:
```
if (ohos_kernel_type == "liteos_m")
import("//kernel/liteos_m/liteos.gni")
module_name = get_path_info(rebase_path("."), "name")
module_group(module_name)
modules = [
"hals",
"wm800",
]
```
3. 在`device/soc/winnermicro`各个层级模块下,同样新增文件`BUILD.gn`,将该层级模块加入编译。以`device/soc/winnermicro/wm800/board/platform/sys/BUILD.gn`为例:
```
import("//kernel/liteos_m/liteos.gni")
module_name = get_path_info(rebase_path("."), "name")
kernel_module(module_name) --- 编译的模块
sources = [ --- 编译的源文件
"wm_main.c",
]
include_dirs = [ --- 模块内使用到的头文件
".",
]
```
4. 为了组织链接以及一些编译选项,在`device/soc/winnermicro/wm800/board/BUILD.gn`下的`config("board_config")`填入了相应的参数:
```
config("board_config")
ldflags = [] --- 链接参数,包括ld文件
libs = [] --- 链接库
include_dirs = [] --- 公共头文件
```
5. 为了组织一些产品侧的应用,需要强制链接到产品工程中来,本方案在vendor相应的`config.json`加入了相应的list来组织,在`vendor/hihope/neptune_iotlink_demo/config.json`增加对应的list:
```
"bin_list": [ --- demo list
"elf_name": "hihope",
"enable": "false", --- list开关
"force_link_libs": [
"bootstrap",
"broadcast",
...
]
```
将demo应用作为模块库来管理,开启/关闭某个demo,在bin_list中增减相应库文件即可。bin_list在gn中可以直接被读取,在`device/board/hihope/neptune100/liteos_m/config.gni`新增内容:
```
# config.json parse
if (product_path != "")
product_conf = read_file("$product_path/config.json", "json")
product_name = product_conf.product_name
bin_list = product_conf.bin_list
```
读取list后即可在相应的链接选项上加入相关的组件库,在`//device/soc/winnermicro/wm800/BUILD.gn`添加内容:
```
foreach(bin_file, bin_list)
build_enable = bin_file.enable
...
if(build_enable == "true")
...
foreach(force_link_lib, bin_file.force_link_libs)
ldflags += [ "-l$force_link_lib" ]
...
```
内核子系统适配
在`vendor/hihope/neptune_iotlink_demo/config.json`添加内核子系统及相关配置,如下:
```
"subsystems": [
"subsystem": "kernel",
"components": [
"component": "liteos_m", "features":[]
]
,
```
内核启动适配
由于Neptune100开发板的芯片架构为Openharmony不支持的ck804ef架构,需要进行ck804ef架构移植。适配 `kernel\\liteos_m\\arch\\include`中定义的通用的文件以及函数列表,并放在了 `kernel\\liteos_m\\arch\\csky\\v2\\ck804\\gcc`文件夹下。
内核初始化示例如下:
```
osStatus_t ret = osKernelInitialize(); --- 内核初始化
if(ret == osOK)
threadId = osThreadNew((osThreadFunc_t)sys_init,NULL,&g_main_task); --- 创建init线程
if(threadId!=NULL)
osKernelStart(); --- 线程调度
```
board_main在启动OHOS_SystemInit之前,需要初始化必要的动作,如下:
```
...
UserMain(); --- 启动OpenHarmony OHOS_SystemInit的之前完成驱动的初始化
...
OHOS_SystemInit(); --- 启动OpenHarmony服务,以及组件初始化
...
```
UserMain函数在`device/soc/winnermicro/wm800/board/app/main.c`文件中,如下:
```
...
if (DeviceManagerStart()) --- HDF初始化
printf("[%s] No drivers need load by hdf manager!",__func__);
...
```
HDF驱动框架适配
HDF驱动框架提供了一套应用访问硬件的统一接口,可以简化应用开发,添加HDF组件需要在`//vendor/hihope/neptune_iotlink_demo/kernel_configs`添加:
```
LOSCFG_DRIVERS_HDF=y
LOSCFG_DRIVERS_HDF_PLATFORM=y
```
驱动适配相关文件放置在`drivers/adapter/platform`中,对应有gpio,i2c,pwm,spi,uart,watchdog,都是通过HDF机制加载,本章节以GPIO和UART为例进行详细说明。
GPIO适配
1. 芯片驱动适配文件位于`drivers/adapter/platform`目录,在gpio目录增加`gpio_wm.c`文件,在`BUILD.gn`文件中,描述了W800驱动的编译适配。如下:
```
...
if (defined(LOSCFG_SOC_COMPANY_WINNERMICRO))
sources += [ "gpio_wm.c" ]
...
```
2. `gpio_wm.c`中驱动描述文件如下:
```
/* HdfDriverEntry definitions */
struct HdfDriverEntry g_GpioDriverEntry =
.moduleVersion = 1,
.moduleName = "WM_GPIO_MODULE_HDF",
.Bind = GpioDriverBind,
.Init = GpioDriverInit,
.Release = GpioDriverRelease,
;
HDF_INIT(g_GpioDriverEntry);
```
3. 在`device/board/hihope/shields/neptune100/neptune100.hcs`添加gpio硬件描述信息, 添加内容如下:
```
root
platform
gpio_config
match_attr = "gpio_config";
groupNum = 1;
pinNum = 48;
```
4. 在GpioDriverInit获取hcs参数进行初始化,如下:
```
...
gpioCntlr = GpioCntlrFromHdfDev(device); --- gpioCntlr节点变量获取具体gpio配置
if (gpioCntlr == NULL)
HDF_LOGE("GpioCntlrFromHdfDev fail\\r\\n");
return HDF_DEV_ERR_NO_DEVICE_SERVICE;
...
```
UART适配
1. 芯片驱动适配文件位于`drivers/adapter/platform`目录,在uart目录增加`uart_wm.c`文件,在`BUILD.gn`文件中,描述了W800驱动的编译适配。如下:
```
...
if (defined(LOSCFG_SOC_COMPANY_WINNERMICRO))
sources += [ "uart_wm.c" ]
...
```
2. `uart_wm.c`中驱动描述文件如下:
```
/* HdfDriverEntry definitions */
struct HdfDriverEntry g_UartDriverEntry =
.moduleVersion = 1,
.moduleName = "W800_UART_MODULE_HDF",
.Bind = UartDriverBind,
.Init = UartDriverInit,
.Release = UartDriverRelease,
;
/* Initialize HdfDriverEntry */
HDF_INIT(g_UartDriverEntry);
```
3. 在`device/board/hihope/shields/neptune100/neptune100.hcs`添加uart硬件描述信息, 添加内容如下:
```
root
platform
uart_config
/*
uart0
match_attr = "uart0_config";
num = 0;
baudrate = 115200;
parity = 0;
stopBit = 1;
data = 8;
*/
uart1
match_attr = "uart1_config";
num = 1;
baudrate = 115200;
parity = 0;
stopBit = 1;
data = 8;
```
4. 在UartDriverInit获取hcs参数进行初始化,如下:
```
...
host = UartHostFromDevice(device);
if (host == NULL)
HDF_LOGE("%s: host is NULL", __func__);
return HDF_ERR_INVALID_OBJECT;
...
```
Openharmony子系统适配
子系统的编译选项入口在相应产品`config.json`下,如:`vendor/hihope/neptune_iotlink_demo/config.json`。
wifi_lite组件
首先,在`config.json`文件中,增加`communication`子系统的`wifi_lite`部件,如下:
```
"subsystem": "communication",
"components": [
"component": "wifi_lite",
"optional": "true"
]
,
```
`wifi_lite`部件在 `build/lite/components/communication.json`文件中,描述如下:
```
"component": "wifi_lite",
"targets": [
"//foundation/communication/wifi_lite:wifi" --- wifi_lite的编译目标
],
,
```
在本案例中,`wifi`适配源码可见`device/soc/winnermicro/wm800/board/src/wifi/wm_wifi.c`,如下:
```
int tls_wifi_netif_add_status_event(tls_wifi_netif_status_event_fn event_fn) ---用于增加wifi事件功能
u32 cpu_sr;
struct tls_wifi_netif_status_event *evt;
//if exist, remove from event list first.
tls_wifi_netif_remove_status_event(event_fn);
evt = tls_mem_alloc(sizeof(struct tls_wifi_netif_status_event));
if(evt==NULL)
return -1;
memset(evt, 0, sizeof(struct tls_wifi_netif_status_event));
evt->status_callback = event_fn;
cpu_sr = tls_os_set_critical();
dl_list_add_tail(&wifi_netif_status_event.list, &evt->list);
tls_os_release_critical(cpu_sr);
return 0;
```
系统服务管理子系统适配
系统服务管理子系统适配添加`samgr_lite`部件,直接在`config.json`配置,如下:
```
"subsystem": "distributedschedule",
"components": [
"component": "samgr_lite"
]
,
```
公共基础库子系统适配
公共基础库子系统适配添加了`kv_store、file`部件,直接在`config.json`配置,如下:
```
"subsystem": "utils",
"components": [
"component": "kv_store",
"features": [
"enable_ohos_utils_native_lite_kv_store_use_posix_kv_api = true"
]
,
"component": "file", "features":[]
]
,
```
适配`kv_store`部件时,键值对会写到文件中。在轻量系统中,文件操作相关接口有`POSIX`接口与`HalFiles`接口这两套实现。
因为对接内核的文件系统,采用`POSIX`相关的接口,所以`features`需要增加`enable_ohos_utils_native_lite_kv_store_use_posix_kv_api = true`。
启动恢复子系统适配
启动恢复子系统适配添加了`bootstrap_lite、syspara_lite`部件,直接在`config.json`配置,如下:
```
"subsystem": "startup",
"components": [
"component": "bootstrap_lite"
,
"component": "syspara_lite",
"features": [
"enable_ohos_startup_syspara_lite_use_posix_file_api = true",
"config_ohos_startup_syspara_lite_data_path = \\"/data/\\""
]
]
,
```
适配bootstrap_lite部件时,需要在链接脚本文件`device/soc/winnermicro/wm800/board/ld/w800/gcc_csky.ld`中手动新增如下段:
```
.zinitcall_array :
. = ALIGN(0x4) ;
PROVIDE_HIDDEN (__zinitcall_core_start = .);
KEEP (*(SORT(.zinitcall.core*)))
KEEP (*(.zinitcall.core*))
PROVIDE_HIDDEN (__zinitcall_core_end = .);
. = ALIGN(0x4) ;
PROVIDE_HIDDEN (__zinitcall_device_start = .);
KEEP (*(SORT(.zinitcall.device*)))
KEEP (*(.zinitcall.device*))
PROVIDE_HIDDEN (__zinitcall_device_end = .);
. = ALIGN(0x4) ;
PROVIDE_HIDDEN (__zinitcall_bsp_start = .);
KEEP (*(SORT(.zinitcall.bsp*)))
KEEP (*(.zinitcall.bsp*))
PROVIDE_HIDDEN (__zinitcall_bsp_end = .);
. = ALIGN(0x4) ;
PROVIDE_HIDDEN (__zinitcall_sys_service_start = .);
KEEP (*(SORT(.zinitcall.sys.service*)))
KEEP (*(.zinitcall.sys.service*))
PROVIDE_HIDDEN (__zinitcall_sys_service_end = .);
. = ALIGN(0x4) ;
PROVIDE_HIDDEN (__zinitcall_app_service_start = .);
KEEP (*(SORT(.zinitcall.app.service*)))
KEEP (*(.zinitcall.app.service*))
PROVIDE_HIDDEN (__zinitcall_app_service_end = .);
. = ALIGN(0x4) ;
PROVIDE_HIDDEN (__zinitcall_sys_feature_start = .);
KEEP (*(SORT(.zinitcall.sys.feature*)))
KEEP (*(.zinitcall.sys.feature*))
PROVIDE_HIDDEN (__zinitcall_sys_feature_end = .);
. = ALIGN(0x4) ;
PROVIDE_HIDDEN (__zinitcall_app_feature_start = .);
KEEP (*(SORT(.zinitcall.app.feature*)))
KEEP (*(.zinitcall.app.feature*))
PROVIDE_HIDDEN (__zinitcall_app_feature_end = .);
. = ALIGN(0x4) ;
PROVIDE_HIDDEN (__zinitcall_run_start = .);
KEEP (*(SORT(.zinitcall.run*)))
KEEP (*(.zinitcall.run*))
PROVIDE_HIDDEN (__zinitcall_run_end = .);
. = ALIGN(0x4) ;
PROVIDE_HIDDEN (__zinitcall_test_start = .);
KEEP (*(SORT(.zinitcall.test*)))
KEEP (*(.zinitcall.test*))
PROVIDE_HIDDEN (__zinitcall_test_end = .);
. = ALIGN(0x4) ;
PROVIDE_HIDDEN (__zinitcall_exit_start = .);
KEEP (*(SORT(.zinitcall.exit*)))
KEEP (*(.zinitcall.exit*))
PROVIDE_HIDDEN (__zinitcall_exit_end = .);
> REGION_RODATA
```
需要新增上述段是因为`bootstrap_init`提供的对外接口,见`utils/native/lite/include/ohos_init.h`文件,采用的是灌段的形式,最终会保存到上述链接段中。主要的服务自动初始化宏如下表格所示:
| 接口名 | 描述 |
| ---------------------- | -------------------------------- |
| SYS_SERVICE_INIT(func) | 标识核心系统服务的初始化启动入口 |
| SYS_FEATURE_INIT(func) | 标识核心系统功能的初始化启动入口 |
| APP_SERVICE_INIT(func) | 标识应用层服务的初始化启动入口 |
| APP_FEATURE_INIT(func) | 标识应用层功能的初始化启动入口 |
通过上面加载的组件编译出来的lib文件需要手动加入强制链接。
如在 `vendor/hihope/neptune_iotlink_demo/config.json` 中配置了`bootstrap_lite` 部件
```
"subsystem": "startup",
"components": [
"component": "bootstrap_lite"
,
...
]
,
```
`bootstrap_lite`部件会编译`base/startup/bootstrap_lite/services/source/bootstrap_service.c`,该文件中,通过`SYS_SERVICE_INIT`将`Init`函数符号灌段到`__zinitcall_sys_service_start`和`__zinitcall_sys_service_end`中,由于`Init`函数是没有显式调用它,所以需要将它强制链接到最终的镜像。如下:
```
static void Init(void)
static Bootstrap bootstrap;
bootstrap.GetName = GetName;
bootstrap.Initialize = Initialize;
bootstrap.MessageHandle = MessageHandle;
bootstrap.GetTaskConfig = GetTaskConfig;
bootstrap.flag = FALSE;
SAMGR_GetInstance()->RegisterService((Service *)&bootstrap);
SYS_SERVICE_INIT(Init); --- 通过SYS启动即SYS_INIT启动就需要强制链接生成的lib
```
在`base/startup/bootstrap_lite/services/source/BUILD.gn`文件中,描述了在`out/neptune100/neptune_iotlink_demo/libs` 生成 `libbootstrap.a`,如下:
```
static_library("bootstrap")
sources = [
"bootstrap_service.c",
"system_init.c",
]
...
```
适配`syspara_lite`部件时,系统参数会最终写到文件中进行持久化保存。在轻量系统中,文件操作相关接口有POSIX接口与HalFiles接口这两套实现。
因为对接内核的文件系统,采用POSIX相关的接口,所以features字段中需要增加`enable_ohos_startup_syspara_lite_use_posix_file_api = true`。
### XTS子系统适配
XTS子系统的适配,直接在`config.json`中加入组件选项:
```
"subsystem": "xts",
"components": [
"component": "xts_acts",
"features":
[
"config_ohos_xts_acts_utils_lite_kv_store_data_path = \\"/data\\"",
"enable_ohos_test_xts_acts_use_thirdparty_lwip = true"
]
,
"component": "xts_tools", "features":[]
]
```
另外,XTS功能也使用了list来组织,在`config.json`文件中增减相应模块:
```
"bin_list": [
"enable": "true",
"force_link_libs": [
"module_ActsParameterTest",
"module_ActsBootstrapTest",
"module_ActsDfxFuncTest",
"module_ActsHieventLiteTest",
"module_ActsSamgrTest",
"module_ActsUtilsFileTest",
"module_ActsKvStoreTest",
"module_ActsWifiServiceTest"
]
],
```
其它组件的适配过程与官方以及其它厂商的过程类似,不再赘述。
以上是关于OpenHarmony 平头哥玄铁架构 轻量系统移植—润和W800移植分享的主要内容,如果未能解决你的问题,请参考以下文章
阿里开源玄铁RISC-V系列处理器,推动RISC-V架构走向成熟
阿里平头哥发布RISC-V高能效处理器玄铁C908,打造端云一体生态
首届玄铁RISC-V生态大会上海举办,阿里平头哥首次展示RISC-V生态全景
极客日报第127期:华为最新人事调整:余承东任智能汽车解决方案 BU CEO;美团悄悄更换抽佣规则,佣金不降反升;Scala 3 正式发布