动态规划_01背包
Posted passion-sky
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了动态规划_01背包相关的知识,希望对你有一定的参考价值。
0-1 背包问题:给定 n 种物品和一个容量为 C 的背包,物品 i 的重量是 wi,其价值为 vi 。
问:应该如何选择装入背包的物品,使得装入背包中的物品的总价值最大?
分析一波,面对每个物品,我们只有选择拿取或者不拿两种选择,不能选择装入某物品的一部分,也不能装入同一物品多次。
解决办法:声明一个 大小为 m[n][c] 的二维数组,m[ i ][ j ] 表示 在面对第 i 件物品,且背包容量为 j 时所能获得的最大价值 ,那么我们可以很容易分析得出 m[i][j] 的计算方法,
(1). j < w[i] 的情况,这时候背包容量不足以放下第 i 件物品,只能选择不拿
m[ i ][ j ] = m[ i-1 ][ j ]
(2). j>=w[i] 的情况,这时背包容量可以放下第 i 件物品,我们就要考虑拿这件物品是否能获取更大的价值。
如果拿取,m[ i ][ j ]=m[ i-1 ][ j-w[ i ] ] + v[ i ]。 这里的m[ i-1 ][ j-w[ i ] ]指的就是考虑了i-1件物品,背包容量为j-w[i]时的最大价值,也是相当于为第i件物品腾出了w[i]的空间。
如果不拿,m[ i ][ j ] = m[ i-1 ][ j ] , 同(1)
究竟是拿还是不拿,自然是比较这两种情况那种价值最大。
由此可以得到状态转移方程:
- if(j>=w[i])
- m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);
- else
- m[i][j]=m[i-1][j];
例:0-1背包问题。在使用动态规划算法求解0-1背包问题时,使用二维数组m[i][j]存储背包剩余容量为j,可选物品为i、i+1、……、n时0-1背包问题的最优值。绘制
价值数组v = {8, 10, 6, 3, 7, 2},
重量数组w = {4, 6, 2, 2, 5, 1},
背包容量C = 12时对应的m[i][j]数组。
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
1 | 0 | 0 | 0 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
2 | 0 | 0 | 0 | 8 | 8 | 10 | 10 | 10 | 10 | 18 | 18 | 18 |
3 | 0 | 6 | 6 | 8 | 8 | 14 | 14 | 16 | 16 | 18 | 18 | 24 |
4 | 0 | 6 | 6 | 9 | 9 | 14 | 14 | 17 | 17 | 19 | 19 | 24 |
5 | 0 | 6 | 6 | 9 | 9 | 14 | 14 | 17 | 17 | 19 | 21 | 24 |
6 | 2 | 6 | 8 | 9 | 11 | 14 | 16 | 17 | 19 | 19 | 21 | 24 |
(第一行和第一列为序号,其数值为0)
如m[2][6],在面对第二件物品,背包容量为6时我们可以选择不拿,那么获得价值仅为第一件物品的价值8,如果拿,就要把第一件物品拿出来,放第二件物品,价值10,那我们当然是选择拿。m[2][6]=m[1][0]+10=0+10=10;依次类推,得到m[6][12]就是考虑所有物品,背包容量为C时的最大价值。
- #include <iostream>
- #include <cstring>
- using namespace std;
- const int N=15;
- int main()
- {
- int v[N]={0,8,10,6,3,7,2};
- int w[N]={0,4,6,2,2,5,1};
- int m[N][N];
- int n=6,c=12;
- memset(m,0,sizeof(m));
- for(int i=1;i<=n;i++)
- {
- for(int j=1;j<=c;j++)
- {
- if(j>=w[i])
- m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);
- else
- m[i][j]=m[i-1][j];
- }
- }
- for(int i=1;i<=n;i++)
- {
- for(int j=1;j<=c;j++)
- {
- cout<<m[i][j]<<‘ ‘;
- }
- cout<<endl;
- }
- return 0;
- }
到这一步,可以确定的是可能获得的最大价值,但是我们并不清楚具体选择哪几样物品能获得最大价值。
另起一个 x[ ] 数组,x[i]=0表示不拿,x[i]=1表示拿。
m[n][c]为最优值,如果m[n][c]=m[n-1][c] ,说明有没有第n件物品都一样,则x[n]=0 ; 否则 x[n]=1。当x[n]=0时,由x[n-1][c]继续构造最优解;当x[n]=1时,则由x[n-1][c-w[i]]继续构造最优解。以此类推,可构造出所有的最优解。(这段全抄算法书,实在不知道咋解释啊。。)
- void traceback()
- {
- for(int i=n;i>1;i--)
- {
- if(m[i][c]==m[i-1][c])
- x[i]=0;
- else
- {
- x[i]=1;
- c-=w[i];
- }
- }
- x[1]=(m[1][c]>0)?1:0;
- }
例:
某工厂预计明年有A、B、C、D四个新建项目,每个项目的投资额Wk及其投资后的收益Vk如下表所示,投资总额为30万元,如何选择项目才能使总收益最大?
Project |
Wk |
Vk |
A |
15 |
12 |
B |
10 |
8 |
C |
12 |
9 |
D |
8 |
5 |
结合前面两段代码
- #include <iostream>
- #include <cstring>
- using namespace std;
- const int N=150;
- int v[N]={0,12,8,9,5};
- int w[N]={0,15,10,12,8};
- int x[N];
- int m[N][N];
- int c=30;
- int n=4;
- void traceback()
- {
- for(int i=n;i>1;i--)
- {
- if(m[i][c]==m[i-1][c])
- x[i]=0;
- else
- {
- x[i]=1;
- c-=w[i];
- }
- }
- x[1]=(m[1][c]>0)?1:0;
- }
- int main()
- {
- memset(m,0,sizeof(m));
- for(int i=1;i<=n;i++)
- {
- for(int j=1;j<=c;j++)
- {
- if(j>=w[i])
- m[i][j]=max(m[i-1][j],m[i-1][j-w[i]]+v[i]);
- else
- m[i][j]=m[i-1][j];
- }
- }/*
- for(int i=1;i<=6;i++)
- {
- for(int j=1;j<=c;j++)
- {
- cout<<m[i][j]<<‘ ‘;
- }
- cout<<endl;
- }
- */
- traceback();
- for(int i=1;i<=n;i++)
- cout<<x[i];
- return 0;
- }
输出x[i]数组:0111,输出m[4][30]:22。
得出结论:选择BCD三个项目总收益最大,为22万元。
不过这种算法只能得到一种最优解,并不能得出所有的最优解。
以上是关于动态规划_01背包的主要内容,如果未能解决你的问题,请参考以下文章