python动态规划及编辑距离计算实例

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python动态规划及编辑距离计算实例相关的知识,希望对你有一定的参考价值。

参考技术A 动态规划的三要素:最优子结构,边界和状态转移函数,最优子结构是指每个阶段的最优状态可以从之前某个阶段的某个或某些状态直接得到(子问题的最优解能够决定这个问题的最优解),边界指的是问题最小子集的解(初始范围),状态转移函数是指从一个阶段向另一个阶段过度的具体形式,描述的是两个相邻子问题之间的关系(递推式)

  重叠子问题,对每个子问题只计算一次,然后将其计算的结果保存到一个表格中,每一次需要上一个子问题解时,进行调用,只要o(1)时间复杂度,准确的说,动态规划是利用空间去换取时间的算法.

  判断是否可以利用动态规划求解,第一个是判断是否存在重叠子问题。

爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2

输出: 2

解释: 有两种方法可以爬到楼顶。

1.  1 阶 + 1 阶

2.  2 阶

示例 2:

输入: 3

输出: 3

解释: 有三种方法可以爬到楼顶。

1.  1 阶 + 1 阶 + 1 阶

2.  1 阶 + 2 阶

3.  2 阶 + 1 阶

分析:

假定n=10,首先考虑最后一步的情况,要么从第九级台阶再走一级到第十级,要么从第八级台阶走两级到第十级,因而,要想到达第十级台阶,最后一步一定是从第八级或者第九级台阶开始.也就是说已知从地面到第八级台阶一共有X种走法,从地面到第九级台阶一共有Y种走法,那么从地面到第十级台阶一共有X+Y种走法.

即F(10)=F(9)+F(8)

分析到这里,动态规划的三要素出来了.

边界:F(1)=1,F(2)=2

最优子结构:F(10)的最优子结构即F(9)和F(8)

状态转移函数:F(n)=F(n-1)+F(n-2)

class Solution(object):

    def climbStairs(self, n):

        """

        :type n: int

        :rtype: int

        """

        if n<=2:

            return n

        a=1  #边界

        b=2  #边界

        temp=0

        for i in range(3,n+1):

            temp=a+b    #状态转移

            a=b        #最优子结构

            b=temp      #最优子结构

        return temp

利用动态规划的思想计算编辑距离。

编辑距离是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。通常来说,编辑距离越小,两个文本的相似性越大。这里的编辑操作主要包括三种:

插入:将一个字符插入某个字符串;

删除:将字符串中的某个字符删除;

替换:将字符串中的某个字符替换为另外一个字符。

那么,如何用Python计算编辑距离呢?我们可以从较为简单的情况进行分析。

当两个字符串都为空串,那么编辑距离为0;

当其中一个字符串为空串时,那么编辑距离为另一个非空字符串的长度;

当两个字符串均为非空时(长度分别为 i 和 j ),取以下三种情况最小值即可:

1、长度分别为 i-1 和 j 的字符串的编辑距离已知,那么加1即可;

2、长度分别为 i 和 j-1 的字符串的编辑距离已知,那么加1即可;

3、长度分别为 i-1 和 j-1 的字符串的编辑距离已知,此时考虑两种情况,若第i个字符和第j个字符不同,那么加1即可;如果相同,那么不需要加1。

很明显,上述算法的思想即为 动态规划 。

求长度为m和n的字符串的编辑距离,首先定义函数——edit(i, j),它表示第一个长度为i的字符串与第二个长度为j的字符串之间的编辑距离。动态规划表达式可以写为:

if i == 0 且 j == 0,edit(i, j) = 0

if (i == 0 且 j > 0 )或者 (i > 0 且j == 0),edit(i, j) = i + j

if i ≥ 1 且 j ≥ 1 ,edit(i, j) == min edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) + d(i, j) ,当第一个字符串的第i个字符不等于第二个字符串的第j个字符时,d(i, j) = 1;否则,d(i, j) = 0。

def edit_distance(word1, word2):

    len1 = len(word1)

    len2 = len(word2)

    dp = np.zeros((len1 + 1,len2 + 1))

    for i in range(len1 + 1):

        dp[i][0] = i   

    for j in range(len2 + 1):

        dp[0][j] = j

    for i in range(1, len1 + 1):

        for j in range(1, len2 + 1):

            delta = 0 if word1[i-1] == word2[j-1] else 1

            dp[i][j] = min(dp[i - 1][j - 1] + delta, min(dp[i-1][j] + 1, dp[i][j - 1] + 1))

    return dp[len1][len2]

edit_distance('牛奶','华西奶')

结果:2

用动态规划算法计算字符串的编辑距离



编辑距离问题

什么是两个字符串的编辑距离(edit distance)?给定字符串s1和s2,以及在s1上的如下操作:

  • 插入(Insert)一个字符

  • 移除(Remove)一个字符

  • 替换(Replace)一个字符

试问最小需要多少次这样的操作才能使得s1转换为s2?

比如,单词“cat”和“hat”,这样的操作最少需要一次,只需要把“cat”中的“c”替换为“h”即可。单词“recall”和“call”,这样的操作最少需要两次,只需要把“recall”中的“r”和“e”去掉即可。单词“Sunday”和“Saturday”,这样的操作最少需要3次,在“Sunday”的“S”和“u”中插入“a”和“t”,再把“n”替换成“r”即可。

那么,是否存在一种高效的算法,能够快速、准确地计算出两个字符串的编辑距离呢?

动态规划算法

我们使用动态规划算法(Dynamic Programming)来计算出两个字符串的编辑距离。
我们从两个字符串s1和s2的最末端向前遍历来考虑。假设s1的长度为m,s2的长度为n,算法如下:

  1. 如果两个字符串的最后一个字符一样,那么,我们就可以递归地计算长度为m-1和n-1的两个字符串的情形;

  2. 如果两个字符串的最后一个字符不一样,那么,进入以下三种情形:

    • 插入: 递归地计算长度为m和n-1的两个字符串的情形,这是因为在s1中的末端插入了一个s2的最后一个字符,这样s1和s2的末端字符一样,就是1中情形;

    • 删除: 递归地计算长度为m-1和n的两个字符串的情形,这是在s1中的末端删除了一个字符;

    • 替换: 递归地计算长度为m-1和n-1的两个字符串的情形,这是因为把s1中末端字符替换成了s2的最后一个字符,这样s1和s2的末端字符一样,就是1中情形;

这样,我们就有了子结构问题。对于动态规划算法,我们还需要一个初始化的过程,然后中间维护一张二维表即可。初始化的过程如下: 如果m为0,则至少需要操作n次,即在s1中逐个添加s2的字符,一共是n次;如果n为0,则至少需要操作m次,即把s1的字符逐个删除即可,一共是m次。

Python实现

利用DP算法解决两个字符串的编辑距离的Python代码如下:

# -*- coding: utf-8 -*-
# using Dynamic Programming to solve edit distance problem


# s1, s2 are two strings
def editDistDP(s1, s2):

   m, n = len(s1), len(s2)
   # Create a table to store results of subproblems
   dp = [[0 for _ in range(n+1)] for _ in range(m+1)]

   # using DP in bottom-up manner
   for i in range(m + 1):
       for j in range(n + 1):

           # If first string is empty, only option is to
           # isnert all characters of second string, thus the
           # min opration is j
           if i == 0:
               dp[i][j] = j

           # If second string is empty, only option is to
           # remove all characters of second string, thus the
           # min opration is i
           elif j == 0:
               dp[i][j] = i

           # If last characters are same, ignore last character
           # and recursive for remaining string
           elif s1[i-1] == s2[j-1]:
               dp[i][j] = dp[i-1][j-1]

           # If last character are different, consider all
           # possibilities and find minimum of inserting, removing, replacing
           else:
               dp[i][j] = 1 + min(dp[i][j-1],  # Insert
                                  dp[i-1][j],  # Remove
                                  dp[i-1][j-1])  # Replace

   return dp[m][n]


# Driver program
s1 = "sunday"
s2 = "saturday"
edit_distance = editDistDP(s1, s2)
print("The Edit Distance of '%s' and '%s' is %d."%(s1, s2, edit_distance))

输出结果如下:

The Edit Distance of 'sunday' and 'saturday' is 3.

Java实现

利用DP算法解决两个字符串的编辑距离的Java代码如下:

package DP_example;


// 计算两个字符串的编辑距离(Edit Distance)
public class Edit_Distance {

   // 主函数
   public static void main(String[] args) {
       String str1 = "cat";//"Sunday";
       String str2 = "hat";//"Saturday";
       int edit_dist = edit_distance(str1, str2);
       System.out.println(String.format("The edit distance of '%s' and '%s' is %d.",
               str1, str2, edit_dist));
   }

   /*
   函数edit_distanc: 计算两个字符串的编辑距离(Edit Distance)
   传入参数:  两个字符串str1和str2
   返回: 编辑距离
    */

   public static int edit_distance(String str1, String str2){

       // 字符串的长度
       int m = str1.length();
       int n = str2.length();

       // 初始化表格,用于维护子问题的解
       int[][] dp = new int[m+1][n+1];
       for(int i=0; i <= m; i++)
           for(int j=0; j <= n; j++)
               dp[i][j] = 0;

       // using DP in bottom-up manner
       for(int i=0; i <= m; i++){
           for(int j=0; j <= n; j++) {
               /* If first string is empty, only option is to
                * isnert all characters of second string, thus the
                * min opration is j
                */

               if(i == 0) { dp[i][j] = j;}

               /* If second string is empty, only option is to
                * remove all characters of second string, thus the
                * min opration is i
                */

               else if(j == 0){dp[i][j] = i;}

               /* If last characters are same, ignore last character
                * and recursive for remaining string
                */

               else if(str1.charAt(i-1) == str2.charAt(j-1)){
                   dp[i][j] = dp[i-1][j-1];
               }

               /*If last character are different, consider all
                *possibilities and find minimum of inserting, removing, replacing
                */

               else{
                   /*
                    * dp[i][j-1]: Insert
                    * dp[i-1][j]: Remove
                    * dp[i-1][j-1]: Replace
                    */

                   dp[i][j] = 1 + min(min(dp[i][j-1], dp[i-1][j]), dp[i-1][j-1]);
               }
           }
       }

       return dp[m][n];
   }

   public static int min(int i, int j){
       return (i <= j) ? i : j;
   }

}

输出结果如下:

The edit distance of 'cat' and 'hat' is 1.

其它实现方式

以上,我们用Python和Java以及动态规划算法自己实现了编辑距离的计算。当然,我们也可以调用第三方模块的方法,比如NTLK中的edit_distance()函数,示例代码如下:

# 利用NLTK中的edit_distance计算两个字符串的Edit Distance

from nltk.metrics import edit_distance

s1 = "recall"
s2 = "call"
t = edit_distance(s1, s2)
print("The Edit Distance of '%s' and '%s' is %d." % (s1, s2, t))

输出结果如下:

The Edit Distance of 'recall' and 'call' is 2.

总结

在本文中,我们对于两个字符串的编辑距离的计算,只采用了插入、删除、替换这三种操作,在实际中,可能还会有更多的操作,比如旋转等。当然,这并不是重点,重点是我们需要了解解决这类问题的算法,即动态规划算法。


热 门 推 荐






▼ 长按扫码上方二维码或点击下方阅读原文

免费成为社区注册会员,会员可以享受更多权益

以上是关于python动态规划及编辑距离计算实例的主要内容,如果未能解决你的问题,请参考以下文章

#yyds干货盘点# 动态规划专题:计算字符串的编辑距离

用动态规划算法计算字符串的编辑距离

编辑距离(动态规划)

编辑距离---动态规划00001

经动态规划:编辑距离

简言翻译记忆的原理:用动态规划算法求解最短编辑距离