性能监控与优化
Posted vector6_
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了性能监控与优化相关的知识,希望对你有一定的参考价值。
性能优化——CPU
性能指标:
- 吞吐、延时(应用负载视角)
- CPU、内存(资源视角)
性能分析,其实就是找出应用或系统的瓶颈,并设法去避免或者缓解它们,从而更高效地利用系统资源处理更多的请求。这包含了一系列的步骤,比如下面这六个步骤:
- 选择指标评估应用程序和系统的性能;
- 为应用程序和系统设置性能目标;
- 进行性能基准测试;
- 性能分析定位瓶颈;
- 优化系统和应用程序;
- 性能监控和告警。
性能工具图谱:
平均负载
平均负载是指单位时间内,系统处于可运行状态(R 状态)和不可中断状态(D 状态)的平均进程数,也就是平均活跃进程数。
可运行状态:可运行状态的进程,是指正在使用 CPU 或者正在等待 CPU 的进程,即ps 命令中的R 状态(Running)
不可中断状态:正处于内核态关键流程中的进程,并且这些流程是不可打断的,比如最常见的是等待硬件设备的 I/O 响应,也就是我们在 ps 命令中看到的 D 状态(Uninterruptible Sleep,也称为 Disk Sleep)的进程。
对于活跃进程数,最理想的就是每个 CPU 上都刚好运行着一个进程,这样每个 CPU 都得到了充分利用。比如当平均负载为 2 时,意味着什么呢?
- 在只有 2 个 CPU 的系统上,意味着所有的 CPU 都刚好被完全占用。
- 在 4 个 CPU 的系统上,意味着 CPU 有 50% 的空闲。
- 而在只有 1 个 CPU 的系统中,则意味着有一半的进程竞争不到 CPU。
平均负载为多少时合理?
我们知道,平均负载最理想的情况是等于 CPU 个数。所以在评判平均负载时,首先你要知道系统有几个 CPU,这可以通过 top 命令或者从文件 /proc/cpuinfo 中读取。
知道了CPU个数,如果平均负载比CPU个数还要大时,可以判断系统已经出现了过载。
我们可以简单的通过uptime查看系统的负载:
$ uptime
02:34:03 up 2 days, 20:14, 1 user, load average: 0.63, 0.83, 0.88
各数据的含义:
02:34:03 – 当前时间
up 2 days, 20:14, – 系统运行时间
1 user – 正在登陆用户数
load average: 0.63, 0.83, 0.88 – 依次是过去 1 分钟、5 分钟、15 分钟的平均负载。
Linux 系统压力测试工具:stress
Linux 系统监测工具: sysstat: mpstat pidstat
实际生产环境中,平均负载高于CPU数量的70%的时候时,就应该分析排查负载高的问题。
但 70% 这个数字并不是绝对的,最推荐的方法,还是把系统的平均负载监控起来,然后根据更多的历史数据,判断负载的变化趋势。当发现负载有明显升高趋势时,比如说负载翻倍了,你再去做分析和调查。
平均负载与CPU使用率
平均负载与CPU使用率并不一定完全对应。平均负载指单位时间内,处于可运行状态和不可中断状态的进程数,所以,它不仅包括了正在使用 CPU 的进程,还包括等待 CPU 和等待 I/O 的进程。而 CPU 使用率,是单位时间内 CPU 繁忙情况的统计。可能的情况有:
- CPU 密集型进程,使用大量 CPU 会导致平均负载升高,此时这两者是一致的;
- I/O 密集型进程,等待 I/O 也会导致平均负载升高,但 CPU 使用率不一定很高;
- 大量等待 CPU 的进程调度也会导致平均负载升高,此时的 CPU 使用率也会比较高。
CPU使用率
Linux 作为一个多任务操作系统,将每个 CPU 的时间划分为很短的时间片,再通过调度器轮流分配给各个任务使用,因此造成多任务同时运行的错觉。为了维护 CPU 时间,Linux 通过事先定义的节拍率(内核中表示为 HZ),触发时间中断,并使用全局变量 Jiffies 记录了开机以来的节拍数。每发生一次时间中断,Jiffies 的值就加 1。
节拍率 HZ 是内核的可配选项,可以设置为 100、250、1000 等。不同的系统可能设置不同数值,可以通过查询 /boot/config 内核选项来查看它的配置值。由于节拍率 HZ 是内核选项,所以用户空间程序并不能直接访问。为了方便用户空间程序,内核还提供了一个用户空间节拍率 USER_HZ,它总是固定为 100,也就是 1/100 秒。这样,用户空间程序并不需要关心内核中 HZ 被设置成了多少,因为它看到的总是固定值 USER_HZ。
Linux 通过 /proc 虚拟文件系统,向用户空间提供了系统内部状态的信息,而 /proc/stat 提供的就是系统的 CPU 和任务统计信息。比方说,如果只关注 CPU 的话,可以执行下面的命令:
# 只保留各个CPU的数据
$ cat /proc/stat | grep ^cpu
cpu 280580 7407 286084 172900810 83602 0 583 0 0 0
cpu0 144745 4181 176701 86423902 52076 0 301 0 0 0
cpu1 135834 3226 109383 86476907 31525 0 282 0 0 0
输出中第一列表示的是 CPU 编号,如 cpu0、cpu1 ,而第一行没有编号的 cpu ,表示的是所有 CPU 的累加。其他列则表示不同场景下 CPU 的累加节拍数,它的单位是 USER_HZ,也就是 10 ms(1/100 秒),所以这其实就是不同场景下的 CPU 时间。proc主要条目有:
- user(通常缩写为 us),代表用户态 CPU 时间。注意,它不包括下面的 nice 时间,但包括了 guest 时间。
- nice(通常缩写为 ni),代表低优先级用户态 CPU 时间,也就是进程的 nice 值被调整为 1-19 之间时的 CPU 时间。这里注意,nice 可取值范围是 -20 到 19,数值越大,优先级反而越低
- system(通常缩写为 sys),代表内核态 CPU 时间。
- idle(通常缩写为 id),代表空闲时间。注意,它不包括等待 I/O 的时间(iowait)。
- iowait(通常缩写为 wa),代表等待 I/O 的 CPU 时间。
- irq(通常缩写为 hi),代表处理硬中断的 CPU 时间。
- softirq(通常缩写为 si),代表处理软中断的 CPU 时间。
- steal(通常缩写为 st),代表当系统运行在虚拟机中的时候,被其他虚拟机占用的 CPU 时间。
- guest(通常缩写为 guest),代表通过虚拟化运行其他操作系统的时间,也就是运行虚拟机的 CPU 时间。
- guest_nice(通常缩写为 gnice),代表以低优先级运行虚拟机的时间。
而我们通常所说的 CPU 使用率,就是除了空闲时间外的其他时间占总 CPU 时间的百分比,用公式来表示就是:
C
P
U
使
用
率
=
1
−
空
闲
时
间
/
C
P
U
总
时
间
CPU使用率 = 1-空闲时间/CPU总时间
CPU使用率=1−空闲时间/CPU总时间
但是这里使用/proc/stat 的数据计算出来的是开机以来的平均 CPU 使用率,一般没啥参考价值。
为了计算 CPU 使用率,性能工具一般都会取间隔一段时间(比如 3 秒)的两次值,作差后,再计算出这段时间内的平均 CPU 使用率,即
平
均
C
P
U
使
用
率
=
1
−
(
n
e
w
空
闲
时
间
−
O
l
d
空
闲
时
间
)
/
(
n
e
w
总
C
P
U
时
间
−
o
l
d
总
C
P
U
时
间
)
平均CPU使用率 = 1-(new空闲时间-Old空闲时间)/(new总CPU时间-old总CPU时间)
平均CPU使用率=1−(new空闲时间−Old空闲时间)/(new总CPU时间−old总CPU时间)
上面是系统CPU使用率的计算方法,而对于进程,在 /proc/[pid]/stat 提供了每个进程提供了运行情况的统计信息。
对于上述系统/进程的CPU使用率,各种各样的性能分析工具已经帮我们计算好了。不过要注意的是,**性能分析工具给出的都是间隔一段时间的平均 CPU 使用率,所以要注意间隔时间的设置,特别是用多个工具对比分析时,你一定要保证它们用的是相同的间隔时间。**比如,对比一下 top 和 ps 这两个工具报告的 CPU 使用率,默认的结果很可能不一样,因为 top 默认使用 3 秒时间间隔,而 ps 使用的却是进程的整个生命周期。
常用CPU观测工具
top显示了系统总体的 CPU 和内存使用情况,以及各个进程的资源使用情况。
pidstat相对于top,可以细分监控用户态CPU和内核态CPU每个进程的CPU使用情况
CPU使用率过高怎么办
通过 top、ps、pidstat 等工具,你能够轻松找到 CPU 使用率较高(比如 100% )的进程。但是要想知道具体占用CPU的是哪个函数,可以使用perf
perf top,类似于 top,它能够实时显示占用 CPU 时钟最多的函数或者指令,因此可以用来查找热点函数,如下所示:
$ perf top
Samples: 833 of event 'cpu-clock', Event count (approx.): 97742399
Overhead Shared Object Symbol
7.28% perf [.] 0x00000000001f78a4
4.72% [kernel] [k] vsnprintf
4.32% [kernel] [k] module_get_kallsym
3.65% [kernel] [k] _raw_spin_unlock_irqrestore
...
输出结果中,第一行包含三个数据,分别是采样数(Samples)、事件类型(event)和事件总数量(Event count)。
再往下看是一个表格式样的数据,每一行包含四列,分别是:
- 第一列 Overhead ,是该符号的性能事件在所有采样中的比例,用百分比来表示。
- 第二列 Shared ,是该函数或指令所在的动态共享对象(Dynamic Shared Object),如内核、进程名、动态链接库名、内核模块名等。
- 第三列 Object ,是动态共享对象的类型。比如 [.] 表示用户空间的可执行程序、或者动态链接库,而 [k] 则表示内核空间。
- 最后一列 Symbol 是符号名,也就是函数名。当函数名未知时,用十六进制的地址来表示。
perf record 和 perf report。 perf top 虽然实时展示了系统的性能信息,但它的缺点是并不保存数据,也就无法用于离线或者后续的分析。而 perf record 则提供了保存数据的功能,保存后的数据,需要你用 perf report 解析展示。
在实际使用中,我们还经常为 perf top 和 perf record 加上 -g 参数,开启调用关系的采样,方便我们根据调用链来分析性能问题。
无法用于离线或者后续的分析。而 perf record 则提供了保存数据的功能,保存后的数据,需要你用 perf report 解析展示。
在实际使用中,我们还经常为 perf top 和 perf record 加上 -g 参数,开启调用关系的采样,方便我们根据调用链来分析性能问题。
以上是关于性能监控与优化的主要内容,如果未能解决你的问题,请参考以下文章