luogu P1919 模板A*B Problem升级版(FFT快速傅里叶)
Posted sssy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了luogu P1919 模板A*B Problem升级版(FFT快速傅里叶)相关的知识,希望对你有一定的参考价值。
模板
嗯
做多项式乘法,进位
没了
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define pi acos(-1.0)
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9')c = getchar();
while(c <= '9' && c >= '0')x = x * 10 + c - '0',c = getchar();
return x * f;
}
const int maxn = 400007;
struct cp {
double x,y;
cp (double a = 0,double b = 0): x(a),y(b) {};
} A[maxn],B[maxn];
cp operator + (cp a,cp b) { return cp(a.x + b.x,a.y + b.y);}
cp operator - (cp a,cp b) { return cp(a.x - b.x,a.y - b.y);}
cp operator * (cp a,cp b) { return cp(a.x * b.x - a.y * b.y,a.x * b.y + a.y * b.x); }
void fft(cp *a,int n, int type) {
for(int i = 0,j = 0;i < n;++ i) {
if(i < j) std::swap(a[i],a[j]);
for(int k = n >> 1;(j ^= k) < k;k >>= 1);
}
for(int m = 2;m <= n;m <<= 1) {
cp w1 = cp(cos(2 * pi / m),type * sin(2 * pi / m));
for(int i = 0;i < n;i += m) {
cp w = cp(1.0,0);
for(int k = 0;k < (m >> 1);++ k) {
cp t = w * a[i + k + (m >> 1)],u = a[i + k];
a[i + k] = u + t;
a[i + k + (m >> 1)] = u - t;
w = w * w1;
}
}
}
}
int c[maxn];
char s1[maxn],s2[maxn];
int main() {
int n = read(); --n;
scanf("%s%s",s1,s2);
for(int i = 0;i <= n;++ i) A[i].x = s1[n - i] - '0',B[i].x = s2[n -i] - '0';
int tmp = n;
//printf("%d
",n);
for(n = 1;n <= tmp * 2;n <<= 1);
//printf("%d
",n);
fft(A,n,1);
fft(B,n,1);
/*for(int i = 0;i <= n;++ i) {
printf("%lf
",A[i].x);
} */
for(int i = 0;i <= n;++ i) A[i] = A[i] * B[i];
fft(A,n,-1);
for(int i = 0;i <= n;++ i) c[i] = int(A[i].x / n + 0.5);
for(int i = 0;i <= n;++ i)
if(c[i] > 10) {
//printf("%d
",c[i]);
c[i + 1] += c[i] / 10,c[i] %= 10;
if(i + 1 > n) n ++;
}
for(int i = n;i >= 0;i --)
if(!c[i]) n--;else break;
for(int i = n;i >= 0;i --) printf("%d",c[i]);
puts("");
return 0;
}
以上是关于luogu P1919 模板A*B Problem升级版(FFT快速傅里叶)的主要内容,如果未能解决你的问题,请参考以下文章
P1919 模板A*B Problem升级版(FFT快速傅里叶)
洛谷P1919 模板A*B Problem升级版 题解(FFT的第一次实战)
洛谷P1919 模板A*B Problem升级版(FFT快速傅里叶)