MIMO中矩阵的小笔记(正定,半正定)

Posted Wi-Fi研习者

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MIMO中矩阵的小笔记(正定,半正定)相关的知识,希望对你有一定的参考价值。

判断矩阵正定三个条件

1. 顺序主子式都>0

2. 特征值都>0

3. 矩阵的正惯性指数=n(矩阵的阶数)

如果半正定的话,那么是≥0,其物理意义就是发送信号的能量大于等于0,即可以部分天线不发送。

奇异矩阵和非奇异矩阵

如果A(n×n)为奇异矩阵(singular matrix),那么矩阵A的秩,Rank(A)<n。

如果A(n×n)为非奇异矩阵(nonsingular matrix),那么矩阵A满秩,Rank(A)=n。

其中矩阵的秩的意思是,纵秩为其矩阵的线性无关的纵列的最大数目,行秩为矩阵的线性无关的横行的最大数目。

矩阵的迹

矩阵X的主对角线上所有元素之和称为X的迹,记为tr(X),即tr(X)=Σx_ii。

在对角矩阵中,实际上就是对角线上值的和。如果svd分解完的矩阵,中间的矩阵正定,就是其能量。在MIMO中,其矩阵的迹是能量。

正惯性指数

正惯性指数是矩阵二次型的标准型中平方项系数的正负个数。

二次型的矩阵

  • f(x,y)=x²+4xy+5y²
  • f(x,y,z)=2x²+y²+4xz+yz
  • f(x1,x2,x3,x4)=x1x2+x2x3+x2x4

不是二次型的矩阵

  • f(x,y)=x²+y²+5
  • f(x,y)=2x²-y²+2x

二次型的标准型

只含有平方项的二次型称为二次型的标准型(或法式),即

  • f=k1y1²+k2y2²+ ... +knyn²

例如

  • f(x1,x2,x3)=x1²+4x2²+4x3²,即是二次型的标准型。







以上是关于MIMO中矩阵的小笔记(正定,半正定)的主要内容,如果未能解决你的问题,请参考以下文章

半正定矩阵

matlab 判断矩阵是正定半正定还是负定

matlab 判断矩阵是正定半正定还是负定

如何理解正定矩阵和半正定矩阵

将随机矩阵变为半正定

判定(半)正定矩阵的特殊大于(等于)简写符号