源码拿走,机器学习,区别猫狗
Posted 打工人何苦为难打工人
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了源码拿走,机器学习,区别猫狗相关的知识,希望对你有一定的参考价值。
//记得自己搞好图库哈
"nbformat": 4,
"nbformat_minor": 0,
"metadata":
"colab":
"name": "cat_dog_image_classifier.ipynb",
"provenance": [],
"collapsed_sections": [],
"include_colab_link": true
,
"kernelspec":
"name": "python3",
"display_name": "Python 3"
,
"cells": [
"cell_type": "markdown",
"metadata":
"id": "view-in-github",
"colab_type": "text"
,
"source": [
"<a href=\\"https://colab.research.google.com/github/emilyliublair/Machine-Learning-Projects/blob/main/cat_dog_image_classifier.ipynb\\" target=\\"_parent\\"><img src=\\"https://colab.research.google.com/assets/colab-badge.svg\\" alt=\\"Open In Colab\\"/></a>"
]
,
"cell_type": "code",
"metadata":
"id": "la_Oz6oLlub6"
,
"source": [
"try:\\n",
" # This command only in Colab.\\n",
" %tensorflow_version 2.x\\n",
"except Exception:\\n",
" pass\\n",
"import tensorflow as tf\\n",
"\\n",
"from tensorflow.keras.models import Sequential\\n",
"from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D\\n",
"from tensorflow.keras.preprocessing.image import ImageDataGenerator\\n",
"\\n",
"import os\\n",
"import numpy as np\\n",
"import matplotlib.pyplot as plt"
],
"execution_count": null,
"outputs": []
,
"cell_type": "code",
"metadata":
"id": "jaF8r6aOl48C"
,
"source": [
"# Get project files\\n",
"!wget https://cdn.freecodecamp.org/project-data/cats-and-dogs/cats_and_dogs.zip\\n",
"\\n",
"!unzip cats_and_dogs.zip\\n",
"\\n",
"PATH = 'cats_and_dogs'\\n",
"\\n",
"train_dir = os.path.join(PATH, 'train')\\n",
"validation_dir = os.path.join(PATH, 'validation')\\n",
"test_dir = os.path.join(PATH, 'test')\\n",
"\\n",
"# Get number of files in each directory. The train and validation directories\\n",
"# each have the subdirecories \\"dogs\\" and \\"cats\\".\\n",
"total_train = sum([len(files) for r, d, files in os.walk(train_dir)])\\n",
"total_val = sum([len(files) for r, d, files in os.walk(validation_dir)])\\n",
"total_test = len(os.listdir(test_dir))\\n",
"\\n",
"# Variables for pre-processing and training.\\n",
"batch_size = 128\\n",
"epochs = 15\\n",
"IMG_HEIGHT = 150\\n",
"IMG_WIDTH = 150"
],
"execution_count": null,
"outputs": []
,
"cell_type": "code",
"metadata":
"id": "EOJFeEfumns6"
,
"source": [
"#image generators from image datasets\\n",
"train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale = 1/255)\\n",
"validation_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale = 1/255)\\n",
"test_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(rescale = 1/255)\\n",
"\\n",
"train_data_gen = train_image_generator.flow_from_directory(\\n",
" directory = train_dir,\\n",
" target_size=(IMG_HEIGHT, IMG_WIDTH),\\n",
" batch_size=batch_size,\\n",
" class_mode=\\"binary\\",\\n",
")\\n",
"val_data_gen = validation_image_generator.flow_from_directory(\\n",
" directory = validation_dir,\\n",
" target_size=(IMG_HEIGHT, IMG_WIDTH),\\n",
" batch_size=batch_size,\\n",
" class_mode=\\"binary\\",\\n",
")\\n",
"test_data_gen = test_image_generator.flow_from_directory(\\n",
" directory = PATH,\\n",
" classes=['test'],\\n",
" target_size=(IMG_HEIGHT, IMG_WIDTH),\\n",
" batch_size=batch_size,\\n",
" class_mode=\\"binary\\",\\n",
" shuffle=False\\n",
")"
],
"execution_count": null,
"outputs": []
,
"cell_type": "code",
"metadata":
"id": "TP0WA8j1mt7Q"
,
"source": [
"#function for plotting images\\n",
"def plotImages(images_arr, probabilities = False):\\n",
" fig, axes = plt.subplots(len(images_arr), 1, figsize=(5,len(images_arr) * 3))\\n",
" if probabilities is False:\\n",
" for img, ax in zip( images_arr, axes):\\n",
" ax.imshow(img)\\n",
" ax.axis('off')\\n",
" else:\\n",
" for img, probability, ax in zip( images_arr, probabilities, axes):\\n",
" ax.imshow(img)\\n",
" ax.axis('off')\\n",
" if probability > 0.5:\\n",
" ax.set_title(\\"%.2f\\" % (probability*100) + \\"% dog\\")\\n",
" else:\\n",
" ax.set_title(\\"%.2f\\" % ((1-probability)*100) + \\"% cat\\")\\n",
" plt.show()\\n",
"\\n",
"sample_training_images, _ = next(train_data_gen)\\n",
"plotImages(sample_training_images[:5])\\n"
],
"execution_count": null,
"outputs": []
,
"cell_type": "code",
"metadata":
"id": "-32RRLY_3voj"
,
"source": [
"#random transformations to training data\\n",
"train_image_generator = tf.keras.preprocessing.image.ImageDataGenerator(\\n",
" rescale = 1/255,\\n",
" rotation_range=40,\\n",
" width_shift_range=0.2,\\n",
" height_shift_range=0.2,\\n",
" shear_range=0.2,\\n",
" zoom_range=0.2,\\n",
" horizontal_flip=True,\\n",
" )\\n"
],
"execution_count": null,
"outputs": []
,
"cell_type": "code",
"metadata":
"id": "pkwq2LFvqabS"
,
"source": [
"#new image generator with transformations\\n",
"train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size,\\n",
" directory=train_dir,\\n",
" target_size=(IMG_HEIGHT, IMG_WIDTH),\\n",
" class_mode='binary')\\n",
"\\n",
"augmented_images = [train_data_gen[0][0][0] for i in range(5)]\\n",
"\\n",
"plotImages(augmented_images)"
],
"execution_count": null,
"outputs": []
,
"cell_type": "code",
"metadata":
"id": "k8aZkwMam4UY"
,
"source": [
"#creating the model\\n",
"model = Sequential()\\n",
"model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)))\\n",
"model.add(MaxPooling2D((2, 2)))\\n",
"model.add(Conv2D(64, (3, 3), activation='relu'))\\n",
"model.add(MaxPooling2D((2, 2)))\\n",
"model.add(Flatten())\\n",
"model.add(Dense(64, activation='relu'))\\n",
"model.add(Dense(1,activation='sigmoid'))\\n",
"\\n",
"model.compile(optimizer='adam',\\n",
" loss='binary_crossentropy',\\n",
" metrics=['accuracy']\\n",
" )\\n",
"\\n",
"model.summary()"
],
"execution_count": null,
"outputs": []
,
"cell_type": "code",
"metadata":
"id": "1niQDz5x6K7y"
,
"source": [
"#train model\\n",
"history = model.fit(\\n",
" train_data_gen,\\n",
" steps_per_epoch=int(total_train/batch_size),\\n",
" epochs=epochs,\\n",
" validation_data=val_data_gen,\\n",
" validation_steps=int(total_train/batch_size)\\n",
" )"
],
"execution_count": null,
"outputs": []
,
"cell_type": "code",
"metadata":
"id": "5xS51mB56OAC"
,
"source": [
"#visualize accuracy and loss of model\\n",
"acc = history.history['accuracy']\\n",
"val_acc = history.history['val_accuracy']\\n",
"\\n",
"loss = history.history['loss']\\n",
"val_loss = history.history['val_loss']\\n",
"\\n",
"epochs_range = range(epochs)\\n",
"\\n",
"plt.figure(figsize=(8, 8))\\n",
"plt.subplot(1, 2, 1)\\n",
"plt.plot(epochs_range, acc, label='Training Accuracy')\\n",
"plt.plot(epochs_range, val_acc, label='Validation Accuracy')\\n",
"plt.legend(loc='lower right')\\n",
"plt.title('Training and Validation Accuracy')\\n",
"\\n",
"plt.subplot(1, 2, 2)\\n",
"plt.plot(epochs_range, loss, label='Training Loss')\\n",
"plt.plot(epochs_range, val_loss, label='Validation Loss')\\n",
"plt.legend(loc='upper right')\\n",
"plt.title('Training and Validation Loss')\\n",
"plt.show()"
],
"execution_count": null,
"outputs": []
,
"cell_type": "code",
"metadata":
"id": "vYrSifOit2aK"
,
"source": [
"#predictions\\n",
"probabilities = model.predict(test_data_gen)\\n",
"prediction = model.predict_classes(test_data_gen)\\n",
"plotImages([test_data_gen[0][0][i] for i in range(50)],probabilities=probabilities,)"
],
"execution_count": null,
"outputs": []
,
"cell_type": "code",
"metadata":
"id": "4IH86Ux_u7TZ"
,
"source": [
"#test with challenge\\n",
"answers = [1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,\\n",
" 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0,\\n",
" 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1,\\n",
" 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, \\n",
" 0, 0, 0, 0, 0, 0]\\n",
"\\n",
"correct = 0\\n",
"\\n",
"for probability, answer in zip(probabilities, answers):\\n",
"\\n",
" if np.round(probability) == answer:\\n",
" correct +=1\\n",
"\\n",
"percentage_identified = (correct / len(answers))\\n",
"\\n",
"passed_challenge = percentage_identified > 0.63\\n",
"\\n",
"print(f\\"Your model correctly identified round(percentage_identified, 2)% of the images of cats and dogs.\\")\\n",
"\\n",
"if passed_challenge:\\n",
" print(\\"You passed the challenge!\\")\\n",
"else:\\n",
" print(\\"You haven't passed yet. Your model should identify at least 63% of the images. Keep trying. You will get it!\\")"
],
"execution_count": null,
"outputs": []
]
以上是关于源码拿走,机器学习,区别猫狗的主要内容,如果未能解决你的问题,请参考以下文章
基于SSM+JSP实现的流浪猫狗救助系统(分为用户端和管理员端,领养动物流浪动物知识学习用户管理评论管理领养记录查询流浪猫狗管理等)