大数据开发岗面试复习30天冲刺 - 日积月累,每日五题Day29——数据倾斜2
Posted Maynor学长
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了大数据开发岗面试复习30天冲刺 - 日积月累,每日五题Day29——数据倾斜2相关的知识,希望对你有一定的参考价值。
theme: juejin
前言
大家好,我是程序员
manor
。作为一名大数据专业学生、爱好者,深知面试重要性,很多学生已经进入暑假模式,暑假也不能懈怠,正值金九银十
的秋招
接下来我准备用30天
时间,基于大数据开发岗面试中的高频面试题,以每日5题的形式,带你过一遍常见面试题及恰如其分的解答。相信只要一路走来,日积月累,我们终会在最高处见。
以古人的话共勉:道阻且长,行则将至;行而不辍,未来可期!
本栏目大数据开发岗高频面试题主要出自
大数据技术
专栏的各个小专栏,由于个别笔记上传太早,排版杂乱,后面会进行原文美化、增加。
文章目录
停🤚
不要往下滑了,
默默想5min,
看看这5道面试题你都会吗?
面试题01、数据源中的数据分布不均匀,Spark需要频繁交互?
面试题02、数据集中的不同Key由于分区方式,导致数据倾斜?
面试题03、JOIN操作中,一个数据集中的数据分布不均匀,另一个数据集较小(主要)?
面试题04、聚合操作中,数据集中的数据分布不均匀(主要)?
面试题05、JOIN操作中,两个数据集都比较大,其中只有几个Key的数据分布不均匀?
以下答案仅供参考:
面试题 01、 数据源中的数据分布不均匀,Spark需要频繁交互?
解决方案:避免数据源的数据倾斜 实现原理:通过在Hive中对倾斜的数据进行预处理,以及在进行kafka数据分发时尽量进行平均分配。这种方案从根源上解决了数据倾斜,彻底避免了在Spark中执行shuffle类算子,那么肯定就不会有数据倾斜的问题了。 方案优点:实现起来简单便捷,效果还非常好,完全规避掉了数据倾斜,Spark作业的性能会大幅度提升。 方案缺点:治标不治本,Hive或者Kafka中还是会发生数据倾斜。 适用情况:在一些Java系统与Spark结合使用的项目中,会出现Java代码频繁调用Spark作业的场景,而且对Spark作业的执行性能要求很高,就比较适合使用这种方案。将数据倾斜提前到上游的Hive ETL,每天仅执行一次,只有那一次是比较慢的,而之后每次Java调用Spark作业时,执行速度都会很快,能够提供更好的用户体验。 总结:前台的Java系统和Spark有很频繁的交互,这个时候如果Spark能够在最短的时间内处理数据,往往会给前端有非常好的体验。这个时候可以将数据倾斜的问题抛给数据源端,在数据源端进行数据倾斜的处理。但是这种方案没有真正的处理数据倾斜问题。
面试题02、数据集中的不同Key由于分区方式,导致数据倾斜?
解决方案1:调整并行度 实现原理:增加shuffle read task的数量,可以让原本分配给一个task的多个key分配给多个task,从而让每个task处理比原来更少的数据。 方案优点:实现起来比较简单,可以有效缓解和减轻数据倾斜的影响。 方案缺点:只是缓解了数据倾斜而已,没有彻底根除问题,根据实践经验来看,其效果有限。 实践经验:该方案通常无法彻底解决数据倾斜,因为如果出现一些极端情况,比如某个key对应的数据量有100万,那么无论你的task数量增加到多少,都无法处理。
总结:调整并行度:适合于有大量key由于分区算法或者分区数的问题,将key进行了不均匀分区,可以通过调大或者调小分区数来试试是否有效
解决方案2: 缓解数据倾斜(自定义Partitioner) 适用场景:大量不同的Key被分配到了相同的Task造成该Task数据量过大。 解决方案:使用自定义的Partitioner实现类代替默认的HashPartitioner,尽量将所有不同的Key均匀分配到不同的Task中。 优势:不影响原有的并行度设计。如果改变并行度,后续Stage的并行度也会默认改变,可能会影响后续Stage。 劣势:适用场景有限,只能将不同Key分散开,对于同一Key对应数据集非常大的场景不适用。效果与调整并行度类似,只能缓解数据倾斜而不能完全消除数据倾斜。而且需要根据数据特点自定义专用的Partitioner,不够灵活。
面试题03、JOIN操作中,一个数据集中的数据分布不均匀,另一个数据集较小(主要)?
解决方案:Reduce side Join转变为Map side Join 方案适用场景:在对RDD使用join类操作,或者是在Spark SQL中使用join语句时,而且join操作中的一个RDD或表的数据量比较小(比如几百M),比较适用此方案。 方案实现原理:普通的join是会走shuffle过程的,而一旦shuffle,就相当于会将相同key的数据拉取到一个shuffle read task中再进行join,此时就是reduce join。但是如果一个RDD是比较小的,则可以采用广播小RDD全量数据+map算子来实现与join同样的效果,也就是map join,此时就不会发生shuffle操作,也就不会发生数据倾斜。 方案优点:对join操作导致的数据倾斜,效果非常好,因为根本就不会发生shuffle,也就根本不会发生数据倾斜。 方案缺点:适用场景较少,因为这个方案只适用于一个大表和一个小表的情况。
面试题04、聚合操作中,数据集中的数据分布不均匀(主要)?
解决方案:两阶段聚合(局部聚合+全局聚合) 适用场景:对RDD执行reduceByKey等聚合类shuffle算子或者在Spark SQL中使用group by语句进行分组聚合时,比较适用这种方案 实现原理:将原本相同的key通过附加随机前缀的方式,变成多个不同的key,就可以让原本被一个task处理的数据分散到多个task上去做局部聚合,进而解决单个task处理数据量过多的问题。接着去除掉随机前缀,再次进行全局聚合,就可以得到最终的结果。具体原理见下图。 优点:对于聚合类的shuffle操作导致的数据倾斜,效果是非常不错的。通常都可以解决掉数据倾斜,或者至少是大幅度缓解数据倾斜,将Spark作业的性能提升数倍以上。 缺点:仅仅适用于聚合类的shuffle操作,适用范围相对较窄。如果是join类的shuffle操作,还得用其他的解决方案将相同key的数据分拆处理
面试题05、JOIN操作中,两个数据集都比较大,其中只有几个Key的数据分布不均匀?
解决方案:为倾斜key增加随机前/后缀 适用场景:两张表都比较大,无法使用Map侧Join。其中一个RDD有少数几个Key的数据量过大,另外一个RDD的Key分布较为均匀。 解决方案:将有数据倾斜的RDD中倾斜Key对应的数据集单独抽取出来加上随机前缀,另外一个RDD每条数据分别与随机前缀结合形成新的RDD(笛卡尔积,相当于将其数据增到到原来的N倍,N即为随机前缀的总个数),然后将二者Join后去掉前缀。然后将不包含倾斜Key的剩余数据进行Join。最后将两次Join的结果集通过union合并,即可得到全部Join结果。 优势:相对于Map侧Join,更能适应大数据集的Join。如果资源充足,倾斜部分数据集与非倾斜部分数据集可并行进行,效率提升明显。且只针对倾斜部分的数据做数据扩展,增加的资源消耗有限。 劣势:如果倾斜Key非常多,则另一侧数据膨胀非常大,此方案不适用。而且此时对倾斜Key与非倾斜Key分开处理,需要扫描数据集两遍,增加了开销。 注意:具有倾斜Key的RDD数据集中,key的数量比较少
总结
今天我们复习了面试中常考的数据倾斜相关的五个问题,你做到心中有数了么?
其实做这个专栏我也有私心,就是希望借助每天写一篇面试题,督促自己学习,以免在面试期间尴尬!平时不流汗,面试多流泪!
对了,如果你的朋友也在准备面试
,请将这个系列扔给他,
好了,今天就到这里,学废了的同学,记得在评论区留言:打卡
。给同学们以激励。
以上是关于大数据开发岗面试复习30天冲刺 - 日积月累,每日五题Day29——数据倾斜2的主要内容,如果未能解决你的问题,请参考以下文章
大数据开发岗面试复习30天冲刺 - 日积月累,每日五题Day23——Spark10
大数据开发岗面试复习30天冲刺 - 日积月累,每日五题Day24——Spark11
大数据开发岗面试复习30天冲刺 - 日积月累,每日五题Day25——Spark12
大数据开发岗面试复习30天冲刺 - 日积月累,每日五题Day25——Spark12